UNDERSTANDING KŪPEʻE (*NERITA POLITA*) GONAD DEVELOPMENT AND DEMOGRAPHY FOR CONTINUED USE AT TWO SITES ON HAWAIʻI ISLAND

A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAIʻI AT HILO IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

TROPICAL CONSERVATION BIOLOGY & ENVIRONMENTAL SCIENCE

DECEMBER 2017

Heather Nahaku Kalei

Thesis Committee:
Marta deMaintenon, Chairperson
Kalei Nuʻuhiwa
Misaki Takabayashi

Keywords: Kūpeʻe, *Nerita polita*, life histories, length at maturity, population density.
Acknowledgements

My deepest gratitude goes out to all those, who, knowingly or unknowingly stoked my love for home, and in turn led me to choose a life and career centered around living in ways which honor my kūpuna. I am grateful for the lessons learned through this thesis journey and the alternate futures they create.

Mahalo mau a mau to those who have guided this journey, including those who came before me, my ‘ohana, committee members and mentors, and the community we are a part of. May this work provoke curiosity, inspiration, and action. May it be refined, added to, and one day rendered obsolete by the wealth of knowledge and understanding.

Amama ua noa!
Abstract

Kūpeʻe (*Nerita polita* Linnaeus, 1758) is a cryptic, mostly nocturnal intertidal species of gastropod mollusc used widely in Hawaiʻi for sustenance and cultural practices. Despite a long tradition of human interaction with this species, information is generally lacking regarding its reproductive ecology. Results of this study suggest that male and female individuals do not differ significantly in size and that the minimum shell length at maturity for both males and females is 14 mm. Mature gonads were present in both sexes throughout the study period, and mating was documented throughout the same period, suggesting continuous spawning throughout the year. These results are consistent at both study sites, Kawaihae and Waiuli, Hawaiʻi. Comparison of population size structure at the study sites with the desirable shell lengths, as denoted by the Bishop Museum lei collection and modern lei, shows that less than 5% of the population fits into the desirable size range.
Table of Contents

Acknowledgements .. i
Abstract ... ii
List of Tables ... vi
List of Figures ... vii
Introduction ... 1
 Morphology ... 1
 Habitat .. 1
Distribution ... 2
Predation ... 3
Edible Kūpe‘e ... 3
Kūpe‘e Connections .. 4
Conservation Status ... 5
The Kūpe‘e Market .. 6
Study Objectives and Rationales .. 6
Study Sites .. 7
 Kawaihae ... 8
 Waiuli .. 9
Chapter 1: Histology ... 10
 Background ... 10
 Reproductive Ecology ... 10
 Mating ... 10
 Spermatogenesis ... 11
 Oocytogenesis ... 11
 Temporal Gonad Development ... 12
 Spawning ... 12
 Ecology of Egg Laying ... 13
 Methods ... 13
 Results ... 14
 Developmental Stages .. 14
 Shell Length at Maturity .. 15
 Sex Ratio ... 16
 Discussion .. 16
List of Tables
Table 1. Shell length ranges.. 16
Table 2. Timing of gonad development... 18
Table 3. Descriptive analysis of shell lengths by month. ... 21
Table 4. Comparative shell lengths and densities across sites.. 22
List of Figures
Figure 1. Study sites at Waiuli and Kawaihae on the Island of Hawai‘i. 8
Figure 2. Male Reproductive Stages. .. 14
Figure 3. Female Reproductive Stages. .. 15
Figure 4. Boxplot of shell lengths for sites combined .. 16
Figure 5. Boxplot comparison of Kawaihae and Waiuli populations 16
Figure 6. Spermatophore transfer tubes. ... 18
Figure 7. Boxplots and means of monthly shell lengths. .. 20
Figure 8. Monthly shell length at Kawaihae. ... 21
Figure 9. Monthly shell length at Waiuli. .. 21
Figure 11. Anuenue color variation ... 27
Figure 10. Bracelet of mahiʻole shells ... 27
Figure 13. Copper wire strung bracelet... 28
Figure 12. N. exuvia coupled with kūpeʻe ʻeleʻele. ... 28
Figure 14. Kūpeʻe palaoa strung with palaoa (whale tooth). ... 29
Figure 15. Black shells sanded to give the appearance of white kaniʻo stripes....................... 29
Figure 16. This modern piece incorporates both another invertebrate 29
Figure 17. Queen Kapiʻolaniʻs lei kūpeʻe... 30
Figure 18. Comparing shell lengths from the BPBM collection and the study sites............. 31
Figure 19. Desirable Shell Length in Shoreline Populations.. 31
Introduction

Ka iʻa kīnohinohi pōhaku.

The fish that adorn the rocks.

The periwinkles and nerites that cling to the rocks in shallow water.

-ʻŌlelo Noʻeau 1354

Effective species conservation and management requires an understanding of population dynamics and life history characteristics. The ʻŌlelo Noʻeau above (Pukui 2001) describes the intimate knowledge Hawaiians had of the animals of the intertidal regions. Today, this type of demographic information may not be frequently obtained for some species, especially those that are nocturnal and utilize lunar cycles (Kronfeld-Schor et al. 2013). The mostly nocturnal intertidal marine gastropod, *Nerita polita*, also known in Hawaiʻi as kūpeʻe, is one such species. Since the purpose of this study is to better understand this species through the lens of perpetuating the continuity of Hawaiian cultural use, the name kūpeʻe will be used.

Morphology

Kūpeʻe is member of the family Neritidae. Its domed shell is smooth, growing up to 4cm in length with three to four whorls. It displays a broad range of shell colors and patterns, which is discussed in detail below. The aperture is white, the columella is smooth, and the columellar edge has two to four weak denticles. The calcareous operculum is also smooth, colored cream to black, and there is no umbilicus (Morris 1974).

Habitat

He pō Kāloa kēia, ua ʻeʻe pūpū.
This is the night of Kāloa, for the shellfish climbs.

The nights of Kāloa, when the shellfish climb onto the wet stones, are good for shellfish hunting.

- ‘Ōlelo No‘eau 907

During diurnal high tides, kūpe‘e reside under water buried in sand or small rubble near the base of basalt or limestone structures, and emerge when the tide recedes below their burrow to graze on the microalgae and diatoms of nearby boulders, and mate (Hughes 1971; Vermeij 1971). They take advantage of the evening or nocturnal low tide, emerging as soon as possible, and returning underground shortly after their nutritional and/or reproductive activities are finished, even if substantial time remains before the incoming tide reaches their burrow. Over the course of this study it was observed that if the low tide occurred towards the early morning, no kūpe‘e would be visible throughout their habitat range, having already retreated underground before the daylight transition took place. It was also noted that on rare occasions at specific locations, kūpe‘e may remain visible during daylight hours.

Kūpe‘e and other neritids provide ecosystem services through grazing on diatom and other microalgae populations, and they contribute to intertidal erosion and habitat transition through the scraping of their radula during grazing (Chelazzi 1982; Murphy and Underwood 2006). Habitat with light to moderate exposure to wave activity is most suitable for kūpe‘e (Hughes 1971).

Distribution

Kūpe‘e are part of the genus *Nerita*, one of the most prominent tropical intertidal groups of the Indo-West Pacific (Estabrooks, Kay, and McCarthy 1999; Frey and Vermeij 2008),
ranging from eastern Africa, between continental Asia and Australia, and across the Pacific to Tahiti, Hawai‘i, and into the north, including Japan. Their broad distribution is likely due to extended periods, sometimes several months, spent as planktonic larvae, which is undocumented in this species, but characteristic of *Nerita* (Giovas et al. 2013; Page and Ferguson 2013), supporting the broad species dispersal.

Predation

Intertidal species are subject to predation from both land and sea. Crepuscular and nocturnal species are optimally situated to prey upon kūpe‘e. Data on kūpe‘e predation specifically are lacking, however, it is likely that they experience similar marine predation as other intertidal invertebrates, including from carnivorous snails, crabs, eel, octopus and lobster. Terrestrial predators could include feral cats, mongoose (*Herpestes javanicus*), birds that hunt coastally in the evenings or at night, such as the aukuʻu (*Nycticorax nycticorax hoactli*), and of course, humans.

Edible Kūpe‘e

Ka iʻa kīnohinohi pōhaku.

The fish that adorn the rocks.

- ‘Ōlelo Noʻeau 1354

Perhaps our oldest connection to kūpe‘e is as meaʻai, or food. In Hawaiʻi, some people eat kūpe‘e raw, others boiled, and others still with their own “secret” recipes. In Tonga, a distinction is made between similar species as such, “we eat the ones that come out of the sand, not the ones on the rocks” (Kalei, pers. comm.). In Kiribati, Micronesia, they are called *te kaban*, the general name for neritids, and they are gathered along with a diverse molluscan population.

Middens across Hawai‘i show that kūpe‘e were consumed at much lower rates (as measured by both number of individual shells and shell weight) than pipipi (N. picea), which made up a large proportion of the molluscan part of the diet. At Wai‘ahukini in Ka‘ū, kūpe‘e were found throughout the oldest to the most recent cultural layers, representing 330±30 years BP (before present) to historic times, but in consistently lower numbers than other molluscs (Emory and Bonk 1969; Lundblad et al. 2014; Mulrooney et al. 1992). An analysis of pre-historic and historic residential middens in South Kohala (AD 1400 – 1900) show that in the same region N. picea, cowrie species, and Drupa species are the most common mollusk taxa (Field 2016), with kūpe‘e entering the midden record in relatively small quantities starting in AD 1650 through historic times. The archeological record of kūpe‘e utilization for sustenance shows no sign declining resource availability or use through time.

Kūpe‘e Connections

Besides lawai‘a, fisher-men and women, it is likely no other group of people know kūpe‘e better than those who dance hula. The word ‘kūpe‘e’ refers, perhaps originally, to the animal and its utilization as wrist and ankle hula adornments, and was later adapted to describe the same type of adornments made of greenery. Lei ʻāʻī, or neck lei, can also be made from kūpe‘e shells. Their allure comes not only from their visual presence, but also from the light rattling sound made when more than one are set in motion together. Kūpe‘e’s cryptic nature, which includes nightly emerging and then re-burial, was also used to symbolize hiding or protecting knowledge. Hula hālau (groups) may guard the sacred knowledge of their art through wearing kūpe‘e. Because of this spiritual belief and practice, hula dancers are one of the primary
user groups, and many are interested in the biology of this species as well as implementing that information in their harvesting practices.

Another indication of the significance of kūpeʻe is its presence in the Kumulipo, a genealogy chant connecting Hawaiʻi’s chiefly lineages with those of the gods and original creation. The Kumulipo begins with the source of life, pō, which comes from the celestial realm, and the first creature called forth, the coral polyp. Of the 2000+ lines of this chant, kūpeʻe appear in the 32nd line, along with pipipi (Nerita picea) (Beckwith 1951), with which it shares the same genus.

Wearing kūpeʻe as an adornment might also denote status, as will be elaborated on in the final inquiry of this paper. Kūpeʻe found in the Bernice Pauahi Bishop Museum collection included rare colors and patterns, and came from a variety of sources, including the estates of many royal or influential individuals.

Conservation Status

Kūpeʻe are not listed as threatened or endangered, and no state or federal regulations govern their harvest (State of Hawaii Department of Land and Natural Resources 1941). However, anecdotal information from kūpeʻe harvesters in Hawaiʻi suggest a decline in shell size and population density within some historically utilized habitats. It is difficult to confirm this suggestion as size-density data for this species is lacking in Hawaiʻi. In addition, as was previously noted, the size range for kūpeʻe is known to have a maximum of about 40mm, and at other locations, such as Kiribati, adults regularly attain such a length, ranging from 20 – 40mm, with a mean of 23.3 mm (F. R. Thomas 2001).

Reason for examination exists, as data supporting modern examples of both declines as well as stability in both the abundance and sizes of fish have been reported from archaeological
studies in other islands in Polynesia (Field, Lipphardt, and Kirch 2016). Shifts in foraging strategies between marine species, as well as development of terrestrial agriculture patterns of resource utilization, are thought to effect resource continuity (Kirch 1982; Field, Lipphardt, and Kirch 2016). Many factors influence adult size and density, including diet, predation, competition, reproductive success, mobility, recruitment, harvesting and other human induced stressors (Riera et al. 2016), such as habitat degradation, and sound and light pollution. No data currently exist describing the relationship between human stressors and kūpeʻe populations. The establishment of baseline population demographic data that will enable future analyses of the extent of population change is an aim of this investigation.

The Kūpeʻe Market

Commercial harvest of a mollusc species has been shown to substantially intensify the harvesting pressure on that species, and can put it at risk for local extinction (F. R. Thomas 2001). The two main uses for kūpeʻe in Hawaiʻi are food and adornment. Kūpeʻe are not a notable item in the food market, however, shells sold for adornment are easily found in stores and through online retailers based in Hawaiʻi. The price for a shell increases with its length. An 18 mm shell might sell for $30, while a 21 mm shell sells for $45. A necklace and bracelet set containing 70 shells 20 to 22 mm in length fetches a price of $450. Four to five hundred dollars is not uncommon for a modern lei kūpeʻe (Etsy.com 2017).

Study Objectives and Rationales

Despite the cultural importance of kūpeʻe and the plethora of intertidal survey data in Hawaiʻi, none of the published datasets include kūpeʻe life history characteristics, demography, or current and historical use. This is because most surveys are conducted during the day when kūpeʻe are submerged, at night during tides too high for kūpeʻe to emerge, or in unsuitable
habitat (Cox et al. 2013). In general, this species is similar to many other neritids whose life
history characteristics are not well known (Giovas et al. 2013).

The objective of this study is to address portions of the knowledge gap related to kūpe’e
reproductive ecology, population dynamics, and historical preferential use. Specifically, I will
undertake an investigation with two parts, with cultural context provided by a third part:

1. Long-term histology: To identify gamete developmental stages; determine temporal
 variations in gamete production; the minimum size at maturity; and the male to female
 ratio at two locations over the course of a year.

2. Short-term population dynamics: To document population density and size structure,
 as well as species assemblage and substrate preference at two locations from
 November 2015 to May 2016.

3. Review of the traditional and historic kūpe’e collection at the Bishop Museum
 (Honolulu, HI), coupled with modern usage to provide temporal context on the use of
 kūpe’e as bodily adornment.

Study Sites

The Hawaiian archipelago is located in the tropics of the North Pacific, and consists of
eight major inhabited islands, as well as numerous atolls, islets and seamounts, between the
Island of Hawai‘i in the south and Kure Atoll in the north. The full range of the archipelago
spans about 1500 miles, from 18N to 28N and, 154W to 178W. Predominantly northeast trade
winds create wetter north and east (windward) coasts, while western and southern (leeward)
coasts tend to be dryer, receiving less precipitation. Two major seasons prevail: kau or kau wela,
meaning dry season (May - September), and ho‘oilo or wet season (October - April). Rainfall is
heavily influenced by Hawai‘i’s terrain. Hawai‘i’s topography ranges from sea level to 4,205 m.
Locally, rainfall can vary from less than 25 cm per year in leeward areas to over 750 cm per year in higher elevations, and windward locales. The length of day and temperature are relatively uniform throughout the year. Daylight varies from 13 ½ hrs to 11 hrs annually, and air temperature generally ranges in the 21 to 32 ºC (USGS Pacific Islands Water Science Center 2013)

I have established two study sites on the Island of Hawai‘i (19.5N, 155W) to capture the highly dynamic climatic range of potential kūpeʻe habitat. One is windward Waiuli, the other is leeward Kawaihae (Figure 1). Potential habitat is assessed as having rubble to boulders with sand base, ranging from the low tide mark inland as far as boulder/rubble surfaces remain moist.

Kawaihae

The Kawaihae site is situated within the district of South Kohala, at the base of the Kohala Mountains. It is adjacent to the Kawaihae Boat Ramp, which is easily accessible by vehicle and on foot. The sandy beach that separates the ramp and study site is a popular recreational and fishing area. Kawaihae is known to be hot and dry, with sea surface temperatures ranging from 25 to 27 ºC, and receiving under 0.25 m of rain annually (USGS Pacific Islands Water Science Center 2013). At Kawaihae, kūpeʻe habitat consists primarily of basalt boulders, with sand and small rubble at rock bases. It receives a substantial amount of wave energy during hoʻoilo (the wet season), arriving from the north and west, rearranging sand and boulder locations. The habitat extends in a 3 to 4 m wide band approximately 30 m along the...
length of the shore. A dense thicket of kiawe trees (*Prosopis pallida*) begins just above the high tide line.

Waiuli

The Waiuli site lies within Richardson’s Ocean Park, which is towards the eastern-most end of the county road running through Keaukaha. This is also a popular recreational area, consisting of a rocky shoreline with intermittent tide pools on basalt rock benches and short stretches of black sand. The study site is broader, with a shallow basalt rubble flat extending seaward along a portion of the shore which becomes exposed at low tides. It also receives lower wave energy due to a protective rock outcropping that disperses wave energies. The habitat here is generally medium sized basalt rubble in sand, extending in a band approximately 10 m wide along 50 m of shoreline. This site also receives considerably more rainfall, averaging more than 3.3m annually, and is situated within a region known for its subterranean freshwater springs, likely contributing to its cooler coastal water temperatures, which range from 21 to 24 ºC (USGS Pacific Islands Water Science Center 2013).
Chapter 1: Histology

Background

Reproductive Ecology

Kūpeʻe is a marine gastropod mollusc from the subclass Neritimorpha. Neritomorphs are gonochoristic, having distinct male and female sexes, both of which have a single gonad located post-torsionally to the right. The gonad discharges by way of a glandular, pallial, genital duct running parallel with the rectum (Fretter 1984). Females have internal fertilization and produce egg capsules via more elaborate genital ducts. The pallial section of the oviduct has multiple structures to produce and outfit egg capsules. These elaborate structures include albumen, distal jelly, or capsule glands, as well as sperm pouches (bursa copulatrix, receptaculum seminis) (Fretter 1984). In males, the testicular duct is typically long, running superficially along the columellar side of the visceral mass (Fretter 1984).

It is not uncommon for gastropods to exhibit different traits based on gender. Sexual dimorphism may be expressed in shell size, tissue color and radula. Smaller shell size in males has been documented for a number of species (Fretter 1984; Voltzow 1994), most relevant to this study are different shell sizes at reproductive maturity.

Mating

In the tropics, many invertebrates mate throughout the year (Fretter 1984). Mating occurs on their feeding grounds, which may also be suitable sites for egg deposition. Consistent with other gastropods, during copulation the male mounts the shell of the female, oriented in the same direction, and slightly to the right side (Fretter 1984). As documented in *Nerita albicilla* and *N. undata*, adult male kūpeʻe have a structure to the left of the right cephalic tentacle called a cephalic penis, which enlarges during copulation and functions to enter the female’s mantle cavity near the vaginal opening and push through a spermatophore “transfer tube” (Iriki 1963).
The cephalic penis can serve to non-invasively identify males if the animal relaxes out of its shell.

Spermatogenesis

Four primary spermatogenetic stages are displayed by molluscs, described here by order of progression: spermatogonia, primary spermatocyte, secondary spermatocyte, and spermatids or spermatozoa (Horn, Achaval, and Zancan 2005). Spermatogonia, and primary and secondary spermatocytes are immature cells, while spermatozoa are considered mature. The various forms are distinguished by their shape, components, and increasing distance from germinal epithelia. For these analyses, individuals are considered mature if spermatozoa have a head, a rod-like, condensed nucleus, and a long tail. Histological analysis is not able to distinguish between spermatogenetic forms, rather it will be used differentiate between macro processes of the gonad, including four categories: immature gonad, mature gonad with immature spermatozoa, mature gonad with mature spermatozoa (active gametogenesis), and mature but degenerating gonad.

Oocytogenesis

The development of oocytes, or oocytogenesis, occurs in female *N. plicata* in four distinct stages (Lasiak and Van der Horst 1988). They are identified by the dominance of (1) (immature) pre-vitellogenic oocytes containing a dense nucleus, with minimal yolk proteins and lipids; (2) (mature) vitellogenic oocytes which house a fully developed nucleus, and protein and lipid filled yolk; (3) degenerating oocytes (immature oocytes and few or no mature oocytes) and cytosis (oocyte breakdown and reabsorption); and (4) connective tissue and pre-vitellogenic oocytes. It is expected that histological analysis of kūpe‘e in this study will be able to identify similar stages as identified above.
Temporal Gonad Development

There appears to be a degree of variability in gonad development across the genus, with *Nerita yoldii* in Hong Kong undergoing active gametogenesis from March to August, spawning from April to August, and recruiting out on the shoreline from June to December (Yeung 2006). In *Nerita albicilla*, major gametogenetic activity takes place from February to August, spawning from June to October, and recruitment from September to December (Yeung 2006). *Nerita plicata* showed active gametogenesis and continuous breeding potential through the majority of the year, as well as major gametogenetic activity and post-spawning stages from March through September (Lasiak and Van der Horst 1988). There is currently no documentation of kūpeʻe gonad development.

Spawning

In some gastropods, gonad maturation occurs far in advance of spawning events, in others it occurs almost simultaneously (Fretter 1984). *Nerita atramentosa* has no real resting phase, although spawning is mainly a summer event (Scott and Kenny 1998). Immature oocytes are present throughout the year, while accumulation and storage of mature oocytes take place over a six-month period. Similar patterns were recorded for the intertidal limpet *Cellana ornata* in New Zealand (Dunmore and Schiel 2000). Additional spawning patterns for *Nerita* were mentioned in the sections above. Fretter (1984) noted that spawning typically occurs at night and may be influenced by both external and internal triggers. External triggers may include a combination of factors: temperature, light, weather, and lunar and tidal cycles. In *Littorina* species, spring tides associated with lunar or bi-lunar rhythms trigger the release of egg capsules (Fretter 1984).
Ecology of Egg Laying

It is common for female gastropods to release multiple masses of spawn each season (Fretter 1984). Almost all caenogastropods fix spawn masses to a firm, sheltered substrate that will remain permanent for the embryonic gestation period (Fretter 1984). The length of gestation varies considerably, even between closely related species, and no information exists describing gestation periods for kūpeʻe. “A high proportion of marine gastropods in southeastern Australia deposit egg masses beneath boulders in shallow pools where they are shielded from UVR, desiccation, and other environmental extremes” (Przeslawski and Davis 2007). Egg laying in kūpeʻe remains undocumented.

Methods

Ten kūpeʻe were collected from each site at the lowest nocturnal tides corresponding with new and full moons once a month for a year. Animals were fixed in 10% formaldehyde for 24 to 48 hrs, then transferred to 70% denatured Histo-prep ethanol. The posterior section of the visceral mass (containing the gonad) was embedded in paraffin and sectioned at 7 to 10 µm. Sections were stained according to Humason’s Animal Tissue Techniques (Presnell and Schreibman 1997) with hematoxylin and counterstained with eosin Y/ phloxine. Five sections from the center of the gonad were examined using a microscope with an ocular micrometer in the eyepiece. Gonad developmental state was recorded at five random intervals per slide. Females were classified as having a mature (well developed) or immature (poorly developed) macro-gonad structure, and for individuals with mature macro-gonads, either mature (vitellogenic) or immature (pre-vitellogenic and maturing) oocytes present, based on the presence of fundamental components: nucleus, and formulated yolk including a build-up of lipids and proteins. Male specimens were considered mature if spermatozoa had a head, a rod-like, condensed nucleus, and a long tail.
Results

Developmental Stages

Histological analysis identified developmental stages for both male and female kūpeʻe. Gametogenesis in both males and females is found to be characterized by a protracted period of gonad gameogenesis, including immature and mature gametes for the majority of the year, with a short period of degeneration in the fall.

Three developmental stages were found in males (Figure 2): Stage 1: Immature spermatozoa dominate in immature macro-gonad. Stage 2) Gonad is mature but inactive, containing immature spermatozoa within a fully formed macro-gonad. Stage 2 was not recorded during this study. Stage 3) Gonad dominated by mature spermatozoa, in full gametogenesis, with macro-gonad build up; this protracted activity extends from January through September. Stage 4) Cytolysis and macro-gonad degeneration, with immature spermatozoa throughout, from October through December. No periods of gonad inactivity were seen.

Females experienced four developmental stages (Figure 3). Stage 1) Immature (pre-vitellogenic) oocytes coupled with inter-connective tissue dominant. Stage 2) Pre-vitellogenic oocytes dominant, with few vitellogenic oocytes within a fully developed macro-gonad structure.
Stage 3) A protracted period from December through August when vitellogenic (mature) oocytes with large yolk dominant. Stage 4) Oocyte degeneration, cytosis and few pre-vitellogenic oocytes, occurring from September through November. The mean maximum vitellogenic oocyte length was 25.08 µm (n=70), with a minimum of 16 µm and maximum of 40 µm. A regression analysis showed no significant relationship between female shell length and maximum oocyte length (F=0.16, p=0.692, R-sq(adj) = 0.00%).

Shell Length at Maturity

Across both sites, immature individuals were found up to 13.60 mm shell length, mature females ranged in shell length from 13.00 mm to 22.25 mm, and mature males ranged from
11.50 mm to 22.50 mm (Figure 4, Table 1). A two-sample T-Test found no significant difference in mean shell length between males and females (T=1.40, p=0.164). However it carries a low statistical power (21 %), so results should be interpreted cautiously. Mann-Whitney Tests found no significant difference in shell lengths between sites for males (p=0.1958 adjusted for ties), or females (p=0.8948).

Sex Ratio

The ratio of females to males is 1.19:1 (147 samples) using data from both sites. Kawaihae had a higher ratio of males (1.31:1) and Waiuli had a higher ratio of females (1.75:1).

Discussion

Maturity by Shell Length

This is the first documentation of kūpeʻe shell length at reproductive maturity. It allows for the development of guidelines for a minimum length at reproductive maturity. The majority of individuals will be mature at shell lengths greater than 14 mm (obtained by rounding

<table>
<thead>
<tr>
<th>MINIMUM (mm)</th>
<th>MAXIMUM (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEMALE</td>
<td>13.00</td>
</tr>
<tr>
<td>MALE</td>
<td>11.50</td>
</tr>
<tr>
<td>IMMATURE</td>
<td>13.60</td>
</tr>
</tbody>
</table>

Table 1. Shell length ranges for female, male and immature individuals.
13.6 mm up to the nearest integer for ease of general utilization), which establishes a minimum length under which individuals should not be harvested.

Contrary to many gastropods, kūpe‘e showed no sexual dimorphism; both sexes display a variety of shell color and pattern, and there is no significant difference in shell length. There is also no evidence of an uneven ratio of females to males. Because no significant difference was found between male and female shell lengths, the minimum length of 14 mm for harvest applies to mature individuals of both sexes.

Reproductive Stages
Male individuals were found to have three distinct stages (1) Immature, (3) Mature gonad and spermatozoa, under gametogenesis, and (4) Mature but post-spawning/degenerating gonads. Stage (2) Pre-spermatozoan (common to this genus), or regenerative stage might be sufficiently short to remain undocumented by this study. Females displayed four distinct stages, identified by the dominance of (1) Pre-vitellogenic oocytes, (2) Vitellogenic oocytes, (3) Degenerating oocytes and cytosis, (4) Interconnective tissue and pre-vitellogenic oocytes. Immature individuals of both sexes were identified by having minimal macro-gonad structure, with immature gametes.

Egg Length
Egg length appeared to vary with reproductive stage, increasing with increasing oocyte generation. An egg in S2 will have a smaller length then those in S3. Oocytes in S3 are also larger than in post-spawning S4. However, caution must be taken in using a 2D cross-section measurement of a 3D object because its measurement is subject to the particular angle of sectioning. For example, a large oocyte could be oriented at its narrowed margin, resulting in an inaccurate measurement. In an effort to reduce this unequal orientation, multiple measurements of maximum oocyte length were taken from histologic sections in each individual.
Spermatophore Transfer Tube

As was noted by Iriki (1963) in *N. albicilla*, kūpeʻe also utilize a cylindrical spermatophore transfer tube, about 4 mm in length, with a rounded head at one end and a thin “tag” at the other, extending an additional 2 mm. The spermatophore transfer tube is conducted by the cephalic penis during mating, and deposited internally in the female. Use of a spermatophore transfer tube is quite common in nerites, however, this is the first such documentation for kūpeʻe.

Timing of Gametogenesis

The results of this histological analysis suggest kūpeʻe are capable of breeding for the majority of the year. Females undergo active gametogenesis from December through August, with post-spawned individuals appearing from September to November. Males display similar pattern: undergoing active gametogenesis from January through September, with a period of post-spawning degeneration from October through December.

<table>
<thead>
<tr>
<th></th>
<th>Developmental Stage</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>Aug</th>
<th>Sept</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEMALES</td>
<td>Gametogenesis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Post Spawning/Degeneration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MALES</td>
<td>Gametogenesis</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Post Spawning/Degeneration</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Table 2. Timing of gonad development.

Fecundity

Within the range of shell lengths measured in the histological portion of this study (maximum = 22.50 mm) there appears to be no maximum shell length at which gonads “shut off”. All mature individuals, both male and female, had active gonads. Oocytes had a maximum length of 40 µm, and unfortunately unequal histological sectioning prevent this study from comparing the oocyte count of larger females to smaller females, but it was observed that, in
general, larger individuals also had larger sections of macro-gonads (thicker swaths of gonad across consecutive slides). In many species, female size is directly related to oocyte production, with larger females producing more oocytes (Harding, Mann, and Kilduff 2007). Future studies utilizing equivalent histological orientations could be used to better evaluate kūpeʻe fecundity.

Caviats

This study did not directly measure the ratio of gonad to body mass to generate a Gonad Index by weight, due to the very small weight of the reproductive organs and their attachment to the gut. Separation of the gonad from the gut for measurement could not be done with reasonable confidence. However, future studies establishing a gonad index for kūpeʻe would be useful for management purposes.

Part of the impetus for this thesis investigation was to better understand population sizes and guidelines for a sustainable harvest. In the absence of density data (now obtained through this study), coupled with the destructive nature of histology, it was deemed wise to be cautious of causing harvesting impacts. Therefore, monthly collection was limited to 10 individuals, in expectation that perhaps 5 of the 10 would be females, able to provide oocyte data. Because of this limited sample size, these results are subject statistical errors in which a finding of no significance is falsely accepted and an underlying significant effect is missed.

Annual variability in gonad production

There is a need for annual data collection in intertidal species, which have been shown to experience significant variability in gonad production across annual reproductive seasons (Dunmore and Schiel 2000). Future studies are necessary to better understand whether the results of this study period are representative of long-term trends in gametogenesis, and in turn, potential spawning and shoreline recruitment.
Chapter 2: Demographics

Methods

Within the low intertidal range, inner and outer transects through kūpeʻe habitat were identified. Transects were approximately 1 m apart, and 1 m² quadrats were deployed every other meter to record kūpeʻe abundance, shell length, composition of the benthos, and invertebrate assemblage.

Results

For the period between November 2015 and May 2016 across both sites, 1036 individuals were sampled. The mean shell length was 14.90 mm, minimum = 4.30 mm, maximum = 23.70 mm. The inter quartile range is 13.30 – 17.00 mm. Mating was seen throughout the study period (Figure 7).

A Kruskal-Wallis Test found that with sites combined, shell length varied significantly by month (p < 0.001, H = 44.84 DF = 6). The months with the biggest differences were January (mean= 13.0 mm) and November (mean = 15.9 mm).
Results at Individual Sites

<table>
<thead>
<tr>
<th>SHELL LENGTH (mm)</th>
<th>NOVEMBER</th>
<th>DECEMBER</th>
<th>JANUARY</th>
<th>FEBRUARY</th>
<th>MARCH</th>
<th>APRIL</th>
<th>MAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>KAWAIHAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>15.2</td>
<td>12.2</td>
<td>14.4</td>
<td>14.9</td>
<td>14.7</td>
<td>13.7</td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>7.1</td>
<td>4.3</td>
<td>8</td>
<td>5</td>
<td>5.8</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>21.8</td>
<td>20.5</td>
<td>21.5</td>
<td>21.2</td>
<td>23.7</td>
<td>20.4</td>
<td></td>
</tr>
<tr>
<td>WAIULI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>16</td>
<td>16.1</td>
<td>15.47</td>
<td>15</td>
<td>14.7</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>10.75</td>
<td>5.4</td>
<td>6.5</td>
<td>6.3</td>
<td>8.2</td>
<td>5.4</td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>21</td>
<td>21.45</td>
<td>20.4</td>
<td>20.5</td>
<td>19</td>
<td>20.9</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Descriptive analysis of shell lengths by month.

At Kawaihae, shell lengths ranged from 4.30 mm to 23.70 mm, with a mean of 14.32 mm, and at Waiuli, shell lengths ranged from 5.40 mm to 21.45 mm, with a mean of 15.52 mm (Table 3). A two-sample T-Test found the means between sites to be significantly different (p=0.000, T=-6.01).

Shoreline Recruitment

The smallest individuals (4 – 10 mm range) are present at both sites throughout the study period.

Kawaihae displayed small individuals each month, with an influx in January, March, April and May (Figure 8). The smallest individual was recorded in January (4.30 mm).

Waiuli experienced an influx of smaller individuals in March, April, and May (Figure 9). However, the lower size ranges are present each month and the smallest individual recorded was in December (5.30 mm).
Habitat

The preferred benthic cover for kūpeʻe active periods is basalt rock (greater than 0.1 m², 50% frequency), basalt rubble (less than 0.1 m²) occurred 22% of the time, followed by mixed coral and basalt rubble at 12%, sand at 11%, coral rubble 3%, and coral (greater than 0.1 m²) macroalgae, grass, microalgae, and cement occurring at a frequency of less than 1%.

The most common invertebrate found was *N. picea* at a frequency of 86%, followed by crabs (4%), *Morula granulata* (3%), *Peronia verruculata* (3%), and *Littoraria* species (2%). The following species occurred less than 1% of the time; *Smaragdinella calyculata*, miscellaneous hermit crabs, *Isognomon californicum*, *Echinometra mathaei*, and *Cellana exarata*.

Densities

The density at Kawaihae was higher than at Waiuli (15.8 individuals/ m², and 7.9 individuals/ m², respectively) (Table 4). Those familiar with kūpeʻe harvesting in Hawaiʻi say that gathering takes place on or around the new moon, which creates very low tides. In order to test the effects of bright or dark moons on kūpeʻe density, an ANOVA was conducted to compare bright and dark sampling nights at Kawaihae and Waiuli, respectively. However, the sample size is small, so the result of no significant difference should be taken cautiously (α = 0.05, p=0.13, F=2.43, df=3).

Discussion

The density at both study sites was higher than recorded in Kaneʻohe, HI, by Kawelo (1997, unpublished), which was 2.1 individuals/ m². However, Kaneʻohe had higher mean shell length (17.6 mm) than either Kawaihae or Waiuli.

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>MEAN SHELL LENGTH (mm)</th>
<th>DENSITY per m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>KAWAIHAE</td>
<td>14.32</td>
<td>15.8</td>
</tr>
<tr>
<td>WAIULI</td>
<td>15.52</td>
<td>7.9</td>
</tr>
<tr>
<td>KANEHOE</td>
<td>17.6</td>
<td>2.1</td>
</tr>
<tr>
<td>KIRIBATI</td>
<td>22.3</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 4. Comparative shell lengths and densities across sites.
Kaneʻohe, is located on the Island of Oʻahu, which has a population of just under 1 million people on an island of about 1500 km², compared to the Island of Hawaii, which houses a population of 200,000 people on a land mass of ~10,400 km² (The United States Census Bureau 2017). Human development and harvesting impacts have a magnified intensity on Oʻahu. The Kaneʻohe study site is located within a large protected bay, which is typically prime kūpeʻe habitat. The lower density in Kaneʻohe may be due to the impacts of coastal development and intensive harvesting pressure from the relatively larger human population.

All locations in Hawaiʻi have smaller mean shell lengths than were recorded in Kiribati, which was 22.3 mm (F. R. Thomas 2001), however, Kaneʻohe had the largest mean shell lengths of the three Hawaiʻi sites. It is possible that larger shell size found in Kiribati can be attributed in part to the comparatively much lower human population in Kiribati (~110,000 people spread over 33 atolls) (The World Bank 2017) and much the more extensive nearshore lagoon habitats of the atolls, coupled with mostly incidental harvesting (a diverse selection of mollusc are harvested, and kūpeʻe are not the most commonly targeted species).

Densities of Bright vs. Dark Nights

He pō hīhīwai.

A night for the hīhīwai.

A gainful night. The hīhīwai are freshwater shellfish. On starry nights, they climb upon the rocks where they can be seen and gathered.

– ‘Ōlelo Noʻeau 903

This ‘ōlelo noʻeau speaks to the connection ka poʻe kahiko (meaning “the people of old”) have observed between hīhīwai (Neritina granosa Sowerby, 1825) and dark nights – because
nights are most starry when the light of the moon does not block them out. The observational knowledge captured in this saying provides the bases for investigations into the connection in to kūpeʻe light sensitivity. An additional parallel between Hawaiian and Western science exists in that hīhīwai and kūpeʻe are closely related in both Hawaiian epistemology and current phylogenetic theory. Until recently hīhīwai were classified in the genus *Nerita*, and although they now reside in a separate genus, they remain in the same family, *Neritidae*.

The finding, in this study, of no significant difference between bright (around the full) and dark (around the new) moons should be interpreted cautiously as the sample size was very small. Kawelo monitored densities along Kaneʻohe Bay, and found higher densities during dark nights, ranging from 1.5 – 4.75 kūpeʻe/ m² as compared to 1.3 – 1.7 kūpeʻe/ m² during bright nights (statistical significance unknown). This question of light effecting foraging and reproductive behaviors may have broader implications for coastal development if it is found that increased ambient light correlates to decreased densities.

Shoreline Recruitment

Kawaihae and Waiuli populations showed significant shell length variability by month, especially between November, with the highest mean shell length, and January, with the lowest. This information, coupled with the results of the histological study, which showed active production of mature gametes from January through August, followed by post-spawning gonad degeneration from September through December, suggests that, while spawning may occur throughout the year, a significant spawning and gonad transitional period takes place in the Fall. Recruits (4 – 10 mm) were found at both sites throughout the study period, indicating that the degeneration and resting phase does not significantly affect shoreline recruitment.
Again, recruitment patterns often occur with annual variation, so these findings would need to be compared with long term monitoring to clarify the timing of events and the intensity of recruitment (i.e. do these results represent a “high”, “normal” or “low” recruitment, and is recruitment changing over time).
Chapter 3: Traditional and Historic Adornment: the Bishop Museum Collection

Background

Many forms of guidance exist to interpret the values of a particular culture. One way is to examine things specified by name. The general word for a shelled animal in Hawaiian is pūpū, and certain groups of shelled animals, such as kūpeʻe, were specifically named. In fact, many specific names for kūpeʻe exist, based on their color and pattern. According to Titcomb et al. (1978), kūpeʻe ula (red) were red; anuenue (rainbow) were red or black striped; palaoa (whale tooth ivory) were creamy white; ‘eleʻele (black, dark) were black; kaniʻo (vertical stripes) were black with white streaks; mahiole (warrior’s helmet) were white with red stripes; and puna were rare (no color description). The rarest and most precious kūpeʻe were saved for aliʻi (royalty) (Pukui 1986). Such is the case of the kūpeʻe, which were gifted to Queen Kapiʻolani as she traveled across Hawaiʻi, and were eventually made into a spectacular lei now on display at the Bernice Pauahi Bishop Museum (BPBM).

Methods

Kūpeʻe used for bodily adornment within the collection at the BPBM Ethnology Department were included in this study. The Museum’s acquisition records for each piece were obtained. Random shells from each piece were measured, and notes on their adornment type, shell length, cordage material, the incorporation of other natural materials, and any shell processing were documented.

Results

The BPBM houses many kūpeʻe pieces with unknown acquisition dates. However, those acquisitions with known dates, range from “before 1889” through 1932, although it is likely some are more recent based on more modern cordage materials. The pieces come from many
sources, including the Queen Liliʻuokalani Collection, the Kapiʻolani-Kalanianaʻole Collection, the Keʻelikōlani Collection, the J.S. Emerson Collection, and the Lucy Kaopaulu Peabody, Edgar and Kalani Henriques Collection. These names may be familiar to many readers as belonging to aliʻi (royalty) lineages. Even the pieces that are from the collections of individuals connected to a specific period in time, do not reliably have information on shell harvesting locations or dates. However, these collections are interesting based on the lengths of shells used (indicating a degree of shell length desirability); the diversity of colors and patterns; the types of processing done to shells; the varieties of materials used to string shells; as well as the incorporation of other species in the pieces.

Qualitative Analysis

Shells were made into necklaces, chokers, and bracelets. The collection included pieces in a range of states – from individual shells without indication of a previous incorporation into a broader bracelet, necklace, etc., to sets of shells along with the deteriorated material that was used to hold them together (Figure 10), to fully intact, well preserved pieces and matched sets.

Colors and Patterns

Shells in the collection displayed many colors and patterns. In addition to a base color, most shells had checkered/chevron patterns, spots, and/or stripes. The collection included shells of many base
colors, including white, black, grey, yellow, orange, pink, and red. There are kani‘o, which are black with vertical white streaks; anuenue, with alternating red, black and white stripes, and mahiʻole, white with red stripes (Titcomb et al. 1978).

Matching Shell Sizes

Several pieces show incredible accuracy in matching shell lengths – containing consecutive identically sized shells – within a tenth of a millimeter.

Material Used for Stringing

Although museum records do not indicate whether the material currently connecting the shells is original, several material types remaining were frequently used: silk ribbon, olonā (*Touchardia latifolia*), and other unknown natural fiber. One piece belonging to the Queen Liliuokalani Collection used copper wire, bending it to the shape of each shell (Figure 13).

Used in combination with other invertebrates
Many pieces included other invertebrates, some of which closely resemble kūpe‘e. One piece includes a shell of *Nerita exuvia* Linnaeus, 1758 (Figure 12), which has a central Indo-West Pacific distribution, including Indonesia and the Philippines (Frey 2014).

Shell Processing.

Some shells showed signs of post-processing. The Queen Lili‘uokalani collection included two pieces, which appeared to be sanded to imitate kani‘o, the white stripe pattern (Figure 15). Another piece was coated with an orange-red lacquer, which was seen chipping off at the edges (Figure 16).
Of all the pieces, one lei that distinctly stands out includes a ring of palaoa (sperm whale tooth), and is paired with palaoa, or white, kūpeʻe (Figure 14). Whale palaoa is highly prized and was fashioned into a variety of adornments, the most incredible of which is the lei niho palaoa, which is “a hook-shaped ornament made originally from a sperm-whale tooth (palaoa or palaowa) and suspended by two coils of braided human hair.” (Buck 1959). Palaoa were also fashioned into more modern hooks, beads for necklaces, as well as carved into detailed imitations of kūpeʻe, called kūpeʻe palaoa (Pukui 1986). Palaoa adornment denoted the high status of its wearer. Here, palaoa colored kūpeʻe are fashioned with whale palaoa, perhaps indicating the significance carried by these kūpeʻe.

Perhaps the most well preserved and diverse piece belonged to Queen Kapiʻolani, wife of King Kalākaua (Figure 17). This incredible piece displays almost every kūpeʻe color and pattern type, some that are not described, as well as shells other than kūpeʻe. It is said that the Queen was gifted individual shells by makaʻāinana (common people) during her travels around the Hawaiian archipelago. They were later combined into this incredible lei.

Quantitative Analysis
Measurements of 208 kūpeʻe were taken from the BPBM collection. The mean shell length is 21.7 mm, median 21.8 mm. Minimum shell length is 13.5 mm and maximum is 42.0
mm. The mean length of kūpeʻe recorded in this study is 14.90 mm, compared to 21.7 mm, the mean shell length from the BPBM collection. A two-sample T-Test comparing mean shell lengths from the BPBM Collection (n=208) and the Hawaiʻi Island Sites (combined) (n=981) found a significant difference in means (p<0.001, T-Value = 18.77).

Desirable Shell Population at Bishop Museum Mean (21.7mm)

Using the mean shell length (21.7 mm) of the BPBM collection as an indicator of desirable shell length for adornment, we find that only 0.3% of all Hawaiʻi Island kūpeʻe recorded during this study had were this length or larger.

Desirable Shell Population at 20mm

If the desirable shell length is reduced to 20mm (an anecdotal harvesting size), less than 5% of the Hawaiʻi Island population fits into this category.

![Comparison of Shell Lengths](image)

Figure 18. Comparing shell lengths from the BPBM collection and the study sites. The BPBM shells are significantly larger.

![Kawaihae & Waiuli Population](image)

Figure 19. Desirable Shell Length in Shoreline Populations. Less than 1% of the sampled population is equal to or larger than the BPBM mean. Less than 5% of the sampled population is greater than or equal to the anecdotal harvest length of 20mm.
Discussion

The BPBM collection provides almost a century of insight into the material use of kūpeʻe. Their presence in royal collections, and their connection to palaoa, another highly valued adornment, reaffirms their importance in the Hawaiian cultural view. The collection includes pieces illustrating great skill in shell selection and adaptation through the use of modern materials. Several historical museums in Hawaiʻi house kūpeʻe collections. Further studies of those collections may provide insight to a broader swath of kūpeʻe adornment, and the prevalence of harvesting larger shell sizes.

It is unlikely that the BPBM mean shell length (21.7 mm) would be found as the mean for populations in Hawaiʻi today. It is much more likely that shells such as those in the collection, or those available for commercial sale today, represent the largest individuals in a given population. Targeting the largest individuals can lead to lower mean shell lengths unless sufficient time for replenishment is allowed. Future studies should include those aimed at understanding kūpeʻe growth rate, catch rate, and size structure at a broader set of sites across Hawaiʻi.

Conclusions

Climate Change

Human induced climate change is a settled fact (Bernstein et al. 2007), the impacts of which are far reaching and particularly concerning in lowland, coastal regions (Lathlean, Seuront, and Ng 2017; C. D. Thomas et al. 2004). Intertidal communities are and will continue to be affected by accelerated sea level rise (SLR), ocean warming, ocean acidification, and increased pollution due to ocean of coastal population centers.

The global average for SLR is 3.1 mm/ year (Williams 2013), however, various scenarios estimate global SLR to increase by 0.3 m to 0.53m by 2050 and 0.75 m to 1.9 m by 2100.
(Marrack and O’Grady 2014). SLR is a driving factor in coastal erosion, with rates of sandy beach erosion exacerbated under future scenarios (Zhang, Douglas, and Leatherman 2004). The ability of sandy beach habitat to migrate, and then for the intertidal ecological community, including kūpe‘e, to re-establish within that new habitat will be critical in the future.

Predicted reductions in global wind speeds and shifting ocean currents may impact distribution potential for kūpe‘e, decreasing the ability for remote recruiting sources to reach previously enriched areas, and making locally driven recruitment even more important. As previously noted, the specifics of this species’ larval/planktonic stage are unknown, but it is possible for warming ocean temperatures to affect the seasonal timing, duration, distribution and resiliency of larva. Warmer ocean temperatures have been linked in Hawai‘i to shifts in macro-algae diversity and benthic cover (Cox et al. 2013). Kūpe‘e recruit to micro-algae dominated substrate. Shifts from micro- to macro-algae dominated low-intertidal regions may decrease available food sources as well as provide a physical barrier to kūpe‘e travel from beneath the sand and up onto boulders or limestone substrate for foraging and mating.

Management Strategies

Potential strategies to promote a sustainable population:

1. Select for sizes above the size at maturity, 14mm, ensuring the population will always contain reproducing individuals. It is encouraging that the mean shell length for both populations are larger than this value.
2. Kūpe‘e have almost continuous breeding potential throughout the year, excluding the fall. Therefore, there is no particular periods of time when kūpe‘e are especially vulnerable to harvesting pressure.
3. Desirable shell lengths (20 – 25 mm) occur at of less than 1% monitored populations. It is likely that harvesting these sizes are removing the largest individuals from the population.

4. Males and females exists in even ratios and similar sizes, so practices of targeting the largest individuals for harvest do not significantly affect a single sex.

5. Kūpe‘e are a relatively sedentary and predictable species, and are easily monitored, so if community members or user groups were interested in understanding localized kūpe‘e populations, including what local abundance and scarcity look like, it would not be very technically difficult. In addition to not being difficult, this type of monitoring would greatly help to inform local harvesting strategies.

6. Kūpe‘e are vulnerable to human caused habitat degradation, such as water pollution, shoreline hardening, and light and noise pollution.

7. Kūpe‘e are vulnerable to climate change impacts such as sea level rise, shifting sand regimes, and increases in macro-algae assemblages. Efforts should be made to model and protect kūpe‘e habitat migration.

Further Studies

A substantial need exists to have archipelago-wide kūpe‘e population data. In this very brief glimpse into the population dynamics occurring between sites on different islands (Hawai‘i and O‘ahu) it is clear there is potential for large variations to exist. In addition to population data is a need for kūpe‘e predation and harvesting data to understand drivers of population reductions. And if populations are being decreased in predictable ways, such as targeting the largest individuals, there is a need to understand the role of the largest individuals to the broader
population. This touches on fecundity and the role of large females. The people of Hawai‘i have a long history of kūpe‘e use, with no indication in the midden record of a decline in use. What traditional management strategies fostered continued resource abundance through time? How can they inform human interactions today?

Finally, all of these efforts should be placed into the context, not of previous climate trends, but of a future of changing climate. Where and how will kūpe‘e habitat change, and what steps can be taken to ensure those new intertidal habitats are able to sustain life?

References

Harding, Juliana M, Roger Mann, and Catherine Ware Kilduff. 2007. “THE EFFECTS OF FEMALE SIZE ON FECUNDITY IN A LARGE MARINE GASTROPOD RAPANA VENOSA (MURICIDAE) Department of Fisheries Science Virginia Institute of Marine Science P. O. Box 1346 Gloucester Point ,” *Journal of Shellfish Research* 26 (1): 33–42.

Marrack, L., and P. O’Grady. 2014. “Predicting Impacts of Sea Level Rise for Cultural and Natural Resources in Five National Park Units on the Island of Hawai‘i.” Honolulu, HI.

