Allen has outlined a world-historical theory of kinship in which the earliest kinship systems are assumed to have been tetradic. Such a system is defined by alternate generation, prescriptive, and classificatory equations and is characterized by bilateral cross cousin marriage. Over time these three types of genealogical equations have tended to breakdown in exactly this order. That is, generational equations tend to be the first to breakdown. While supporting some aspects of Allen’s analysis, Hage has argued that the Dravidian systems of Oceania, such as those found in Fiji, challenge the assumption of this directionality in the transformation of kinship systems. Hage’s argument was based on the assumption that Proto-Oceanic kinship reflected a rule of prescriptive asymmetric alliance, an interpretation based on Blust’s linguistic reconstructions. This article examines a Dravidian system from Fiji and questions whether it is derived from an asymmetric ancestral system. It also provides an alternative view of Proto-Oceanic kinship and its regional transformations. (Kinship transformations, Dravidian kinship terminologies, Fiji, comparative Austronesian studies)

KINSHIP SYSTEMS, EVOLUTION, AND DEEP HISTORY

The circumstance that originally gave the modern discipline of anthropology shape and purpose was a revolution in scientific understanding of the antiquity of man (Trautmann 2001). The publication of Darwin’s *Origin of Species* outlined the processes by which the diversity of living things could have arisen from a single type of ancestral organism. These processes would have required eons, a time scale made available to Darwin by the uniformitarian geology of Hutton and Lyell.

Increasingly, the view that contemporary tribal peoples were products of degeneration after the biblical Fall was called into question. A competing view that cast them as “primitives” frozen in the early stages of cultural evolution became the new consensus. The “primitive” became the object of study for the new field of anthropology, and unilineal evolution was the theoretical framework through which understanding was sought. The goal was to uncover the deep origins and evolution of basic human institutions—that is to say, their developmental stages in a distant past more ancient than the oldest written texts.

In the twentieth century, archaeological field methods were refined, new dating methods developed, and knowledge about prehistory expanded, but contemporaneously ethnologists developed an antipathy to the kinds of questions
about the past that had engaged their predecessors. Many of the non-Western societies that anthropologists were studying were understood to be “peoples without history” (Wolf 1982). The past—certainly the distant past—ceased to be an object of study. Empirical rigor was to be combined with the experiential method of participant observation to yield objective facts and a new understanding of how societies and cultures function in particular historical settings.

By the final quarter of the twentieth century, however, the colonial system that had given birth to fieldwork-based anthropology had ceased to exist, or, rather, was taking on a new form. Colonialism had imposed borders on lands and peoples, but now global capitalism, organized in terms of transnational corporations, was making those same borders increasingly irrelevant. In this time of flux and flow, the positivist ideals of the mid-twentieth century ethnography came to be seen as suspect. The “objective scientific observer” was exposed as literary trope, or, more seriously, as epistemological naiveté. Moreover, the “primitive,” anthropology’s original object of study, had ceased to exist, replaced by the migrant, the refugee, the terrorist and his victims, or the global consumer.

Today postmodernists regard both history and culture as constructed, and the only certainty is imposed by power. Although it is not usually an object of consciousness in the same way as the recent history of events, deep history is also seen as constructed and can become an object of contestation. (The term “deep history” is used here to refer to the history of enduring structures of long duration.)

Over the past 150 years, then, anthropology and its methods and subject matter have continued to change, but in the process, a great deal information has been collected about the peoples of the world. Much information has also been accumulated in recent years by prehistorians, comparative linguists, human geneticists, and so on, and a number of scholars have pointed out that these varied sources can be combined to shed light on the distant human past. For example, using a method they call “triangulation,” Kirch and Green (2001) combine data from archaeology, ethnology, linguistics, and physical anthropology to construct a picture of what Kirch (1984) has called Ancestral Polynesian Society, including the physical environment and culture.

ALLEN’S TETRADIC THEORY OF KINSHIP

As Jones (2003) notes, it has long been recognized that kinship is a particularly conservative cultural domain and therefore particularly useful for reconstructing the distant past. The work of N. J. Allen is a good case in point. In a series of publications he has revisited questions that had been largely ignored for most of the twentieth century (Allen 1989, 1998, 2004). What form did the
earliest systems of kinship and marriage take? How can we know anything about social systems that are that ancient? Are there patterns in the historical transformations of kinship systems? Such questions lay at the heart of comparative kinship studies and, indeed, of anthropology itself in the nineteenth century. The wealth of ethnographic studies that have accumulated since the days of such pioneers in the study of kinship as Morgan and McLennan now makes it possible to reexamine such issues with a clearer understanding of correlations and processes of transformation.

A kinship system is understood to include a set of terms as well as the statuses and roles these terms denote. The latter are assigned, at least in part, on the basis of genealogical relationships. Kinship roles involve sentiments as well as behaviors that are expected, permitted, or prohibited; they include notions of “ought,” but can also be described in terms of statistical patterns discernible in behavior. It is, however, primarily the terminological aspect of kinship that Allen’s work considers, though one element of the normative structure, the definition of marriageability, is central to his model. Allen’s starting point is the assumption that simple forms precede and give rise to more complex forms. Since kinship terminologies are logical structures, the sequence of transformations should be deducible on formal grounds, and correlations of the type discussed below can provide empirical support or disconfirmation of the reconstructions. Briefly stated, Allen argues that the earliest systems of kinship and marriage were “tetradic systems.” A tetradic system is the consequence of two simple “us”/“them” distinctions; the first is the distinction between two groups of siblings, each of which provides spouses for the other, and the second is based on a generational distinction. In its simplest form, a tetradic system requires just four kin terms designating the following positions: “my ‘group’ but opposite generation,” “my ‘group,’ my generation,” “opposite ‘group,’ my generation,” and “opposite ‘group’ and opposite generation.” (See Figure 1. Note that “group” need not be understood as referring to unilineal descent groups; indeed, “us” and “them” may simply be defined in relation to egocentric webs of siblingship.) Two groups of siblings that exchange spouses in one generation exchange children in the next—spouses for the children of their opposite sex siblings.

As Allen points out, a tetradic system is produced by three types of kinship equations:

1. Classificatory equations: These equate same sex siblings, both as relatives and as links to other kin so that, for example, FBCh=FCh.
2. Prescriptive equations: These equate one’s spouse with a particular category of kin, or, to put it differently, prescribe marriage with a particular type
of relative—in the case of a tetradic system, a bilateral cross cousin or his/her equivalent (see below).

3. *Alternate generation equations*: These equate kin of alternate generations such as FF and SS. All three types of equations are common in kinship systems around the world, and when combined can result in a social universe coextensive with the domain of kinship (Allen 1989:178).

Some form of prescriptive equation is a common solution to the problem of marriageability in societies in which everyone is regarded as a kinsman. The simplest form of prescriptive equation reflects a rule of bilateral cross cousin marriage—that is, a rule requiring a male ego to marry a woman related to him as a MBD/FZD and a female ego to marry the equivalent of her FZS/MBS. When combined with “classificatory” (or same-sex sibling equations) and alternate generation equations, prescriptive equations reflecting a bilateral cross cousin marriage rule create a tetradic system. Australian Kariera systems, in which society is divided into four marriage classes, conform to Allen’s tetradic model on the level of sociocentric structure, though they are far less simple on an egocentric level. In the ideal model of a tetradic system the egocentric and sociocentric structures are the same.

All the other major types of kinship systems can be derived from this tetradic model by the successive suspension of the three types of equations. For example,
suspension of the alternate generation equivalences transforms a tetradic system into a typical Dravidian system of symmetric alliance. Reformulating the prescriptive rule, for example, prescribing marriage with a σMBD/φFZS and prohibiting marriage with a σFZD/φMBS, transforms a symmetric system into generalized exchange—an asymmetric marriage system in which groups never give women to those who give women to them. Complete suspension of prescriptive rules results in what Levi-Strauss (1969) calls a complex system, while nullification of classificatory equations (e.g., FB*F) results in a “descriptive” terminology (i.e., one that consistently distinguishes lineal and collateral kin).

Allen’s theory postulates an overall directionality in the transformation of kinship systems towards systems that lack any of the three types of equations that together produce tetradic systems. Put the other way around, a system which lacks any of these equations is unlikely to develop all of them and transform into a tetradic system. Moreover, Allen argues that these equations tend to disappear in a particular order, with alternate generation equations being the first to be dropped and classificatory equations being the last. (Thus, in Allen’s theory Dravidian-type systems are the first step in the transformation of an original tetradic system; this point becomes relevant in a later section of this article.) Allen bases his reasoning on the internal logic of kinship terminologies and on correlations that can be summed up as follows: “Where prescriptive equations are salient classificatory ones can be expected, but not vice versa; and alternate generation equations are probably commoner where prescriptive equations predominate than where they do not (cf. Aberle 1967)” (Allen 1989:178).

HAGE’S CHALLENGE TO TETRADIC THEORY

Hage (2001) noted cases in which documentary and linguistic evidence support Allen’s claim of directionality in the transformation of kinship systems (Burmese [Spiro 1977], Chinese [Benedict 1942, Feng 1937], Mon-Khmer [Parkin 1988], Natsupo [Kryukov 1998], and Algonquian systems [Hockett 1964; Wheeler 1982]). But Hage also argued that the kinship terminologies of two Polynesian outliers in Vanuatu, West Futuna, and Aniwa, are problematic for Allen’s theory. (The populations of the two islands intermarry, speak dialects of the same language, and can be regarded as a single society, West Futuna-Aniwa.)

The kinship system of West Futuna-Aniwa presumably began as a typical Western Polynesian system in which all cousins were classified with siblings. But at some point in the past they began to practice bilateral cross cousin marriage and developed a Dravidian-type kinship terminology. (For a description of Dravidian kinship and marriage see Trautmann 1981.) This transformation, Hage (2001) argued, ran counter to Allen’s claims about the directionality of
change in kinship systems since, as in this case, a system which had lacked a prescriptive equation and made no distinction between cross and parallel cousins later came to do so.

Hage pointed out that most of the West Futuna-Aniwa kin terms are reflexes of (i.e., words derived from) Proto-Polynesian terms (Marck 1996), but in order to be congruent with the prescriptive marriage system that they adopted, terms for some consanguineal relatives had to be extended to affinal kin types (e.g., tojinana = MB, FZH, and SpF, from Proto-Polynesian *tuqa-tina “MB”). For other slots in the system new kin terms had to be adopted (e.g., fakau magoro [sweetheart], for ♂MBS, FZS, H; ♀FZD, MBD, W). Note that in order for the cross cousin category to be created, kin types previously classified as siblings (e.g., FZCh, MBCh) had to be redefined.

Hage (2001:494) pointed out that West Futuna-Aniwa was not the only Polynesian society that practiced cross cousin marriage; it has also been reported for the Marquesas, Rennell, Bellona, and Taumako. However, West Futuna-Aniwa was the only such society to adopt a Dravidian kinship terminology. Bellona and Taumako introduced terms for cross cousins but lacked the full range of Dravidian terminological equations, such as MB=FZH=WF=HF.

According to Hage’s analysis, the adoption of cross cousin marriage on West Futuna-Aniwa did not lead to an endogenous development of a Dravidian terminology as a consequence of an independent working out of the logical implications of the practice. Rather, the unique case of West Futuna-Aniwa is explained by the fact that they were part of a marriage and trade network that included Melanesian peoples on Tanna and Aneityum in Vanuatu. The peoples of Tanna and Aneityum practice cross cousin marriage and have Dravidian kinship terminologies, and Hage hypothesized that the people of West Futuna-Aniwa adopted the Dravidian structure of their Melanesian trading partners “using as needed the lexical resources of their own languages” (Hage 2001:495).

However, the direction of influence and borrowing between West Futuna-Aniwa, on the one hand, and Tanna, on the other, is far from straightforward (Lynch and Fakamuria 1994), but seems to be a more complex case of back and forth borrowing. Both the people of West Futuna-Aniwa and the groups on Tanna with whom they intermarried have moiety systems. Lynch and Fakamuria (1994:79) note that the languages of Tanna have borrowed heavily from West Futuna-Aniwa in semantic fields relating to the sea, canoes, and sailing. On the other hand, the names of the patrilineal moieties on the Polynesian outliers appear to be borrowed from the Kwamera language spoken on Tanna’s east coast. This borrowing of moiety names is to be expected if West Futuna-Aniwa kinship and marriage were modified to conform to Tannese models. In Tannese tradition, however, the moieties did not exist on that island until the arrival of two canoes,
one of them commanded by Mwatiktik, identified with the great Polynesian culture hero Mauitikitiki. The arrival of the canoes brought an end to the peaceful coexistence of mythic times and is linked to the origins of important features of Tannese culture, including moieties. On West Futuna, however, there is no tradition of the moiety system having come from elsewhere. What Lynch and Fakamuria (1994:87) suggest is that the Tannese moieties were introduced from some Polynesian source, with West Futuna being a likely candidate.

Another possible source of influence on the atypical Polynesian kinship system of West Futuna-Aniwa is the Melanesian people of Aneityum to the south. Unlike Tanna, where five distinct languages are spoken, only one language is spoken on Aneityum. The terms collected there by Rivers (1914), although not as thoroughly Dravidian in structure as those of West Futuna-Aniwa, like the latter include a reflex of the Proto-Oceanic (POc) term *matuqa: “MB,” from Proto-Malayo-Polynesian *ma(n)tuqa: MB (Hage 2001:492, 497). In both Aneityum and West Futuna-Aniwa, the reflexes of POc *matuqa include FZH and SpF among their kintype referents, as expected in a Dravidian system. (In contrast to the terms for MB in Aneityum and West Futuna-Aniwa, which are derived from Proto-Oceanic *matuqa, the Whitesands Tannese term for the same relationships, un, cannot be derived from POc.)

In contrast, on the Polynesian outliers of Bellona and Taumako cross cousin marriage led to the development of special terms for cross cousins but did not give rise endogenously to a complete system of Dravidian equations. This is significant because Hage went on to argue, contra Allen’s tetradic theory, that Dravidian systems of eastern Melanesia, including those of Tanna, did develop endogenously and, moreover, represent a clear departure from the Proto-Oceanic system of kinship and marriage. (Proto-Oceanic, the parent language from which most of the Austronesian languages of Melanesia and all those of Polynesia and Micronesia are derived, was spoken in the vicinity of the Bismarck Archipelago around 4,000–2,000 years ago [Pawley and Green 1984].) Following Blust (1980a), Hage assumed Proto-Oceanic kinship and marriage to have been based on asymmetric exchange (i.e., on a matrilateral cross cousin marriage rule).

THE SIGNIFICANCE OF ALLEN’S THEORY AND HAGE’S CRITIQUE

Are Allen’s assumptions about the directionality of kinship transformations wrong, at least in the cases of the Dravidian systems of eastern Melanesia (i.e., Fiji, southern Vanuatu, and Guadalcanal in the Solomon Islands)? Were the Dravidian systems of eastern Melanesia the products of independent transformation of an ancestral Proto-Oceanic system based on asymmetric exchange? One of the examples Hage used to support his claim of novel endogenous
development of a Dravidian system is a Fijian terminology reported by Nayacakalou (1955, 1957) for Tokatoka in Tailevu province on Viti Levu. Hage claimed that this terminology’s Dravidian structure, and presumably the bilateral cross cousin marriage rule at the heart of it, cannot be traced back to ancestral Proto-Oceanic society. Hage based this reading on several types of evidence rooted in linguistic reconstruction of Proto-Oceanic kinship terms. First, that certain terms for cross relatives in the Tokatoka terminology have no cognates in other Oceanic languages and cannot be derived from Proto-Oceanic suggests they are innovations unique to Fiji. In addition, the Fijian term for FZ (*ganei* or *nei*, from *gane i tama-* [father’s sister]) is reducible in Sapir’s sense; that is, it can be decomposed into more basic terms (Sapir 1949[1916], Hage 2001:502). (Sapir argued that words that are reducible in this way are often more recent additions than words that are irreducible.) This fact about the Tokatoka term for “father’s sister” was taken by Hage as an indication that it, too, is an innovation that post-dates the breakup of Proto-Oceanic. (However, both *gane-* [opposite sex sibling] and *tama-* [father] are themselves derived from Proto-Oceanic terms [see Pawley and Ross 1995 for a list of POc kin terms].) Finally, Hage based his interpretation of the Dravidian systems of eastern Melanesia as later, localized developments on a particular understanding of Proto-Oceanic kinship derived from the linguistic reconstructions of Blust (1980a).

Fieldwork in the district of Matailobau in the interior of Viti Levu, Fiji (Turner 1983) showed Matailobau terminology to be thoroughly consistent in its Dravidian logic, and Allen’s (1989, 1998, 2004) theory about the primacy of tetradic systems and the sequence of transformations through which they evolve raises questions. Did the Matialobau terminology and others like it arise endogenously in Fiji through transformation of a Proto-Oceanic terminology radically different from them in logic, as Hage (2001) argued? Or do the Dravidian systems of Fiji represent a residuum of an ancestral Proto-Oceanic system structured by bilateral cross cousin marriage? If the latter, did that system of direct exchange exist at an even earlier stage in the divergence of Austronesian languages?

Beneath these questions lie broader issues concerning the distribution of kinship systems. Trautmann (2000:567) points out that the distribution of Dravidian-type systems is both global and patchy; they are common in southern India, Sri Lanka, and Australia, have a scattered distribution in Indonesia and Oceania, and are abundant in the Americas, but are not found in Europe or Africa. As Trautmann notes, there are essentially three ways this distribution has been explained: through evolutionist, structuralist, and historicist approaches. Allen’s tetradic theory is evolutionary in nature, positing a unidirectional transformation in which the equations that an original tetradic system were based upon
are successively abandoned or new types of equations developed. Present-day societies with Dravidian-type systems, then, could be seen as the first stage in such a transformation. The structuralist would interpret the same world-wide distribution differently. For the structuralist all possible forms of marital exchange are present as possibilities before the human mind, which is everywhere fundamentally the same. Those societies with Dravidian-type systems have simply made the same choice among the various alternatives. Finally, a historicist explanation looks to actual connections and historical influences within contiguous regions, as Trautmann (1981) has done for South Asia. From the historicist perspective, the distributional pattern may be indicative of historical connections, but the existence of such connections would need to be established.

Of course, Allen’s (1989, 1998, and 2004) evolutionist theory is incompatible with a structuralist approach, in that Allen posits a logical developmental sequence inherent in the tetradic system itself. “Structuralism [on the other hand] treats history as a restless flow of contingencies upon which the structure of the human mind strives to impress its shape” (Trautmann 2000:568, emphasis added). However, I argue that Allen’s tetradic theory could be fruitfully combined with a historicist approach. The spread of the Austronesian-speaking peoples was both rapid and comparatively recent, and the details of that history are being filled in by the work of archaeologists, linguists, geneticists, and ethnologists. The time depth of the Austronesian dispersal is sufficiently shallow and knowledge of Austronesian languages sufficiently developed for the reconstruction of Proto-Austronesian terminology. But if the methodology of linguistic reconstruction is the primary tool for that task, Allen’s tetradic theory provides a model of a past earlier than linguistic reconstruction can go. He also provides hypotheses about the order in which the equations underlying tetradic systems are abandoned or negated, and, as noted above, those hypotheses seem to be confirmed by distributional data. Before following Hage (2001) to his conclusion that the Dravidian systems of eastern Melanesia represent exceptions to Allen’s tetradic theory, it would behoove us to carefully scrutinize Hage’s argument. This, in turn, requires grappling with the thorny issues surrounding linguistic reconstruction, since it is Blust’s (1981a) reconstructions of early Austronesian kinship terms that ultimately underpin Hage’s argument.

LINGUISTIC RECONSTRUCTION OF KINSHIP SYSTEMS

Hage argued that some of the terms for cross relatives in the Fijian system described by Nayacakalou (1955, 1957) have no cognates outside Fiji and have no basis in the Proto-Oceanic terminology as reconstructed by Pawley and Ross (1995). For convenience in examining this linguistic argument for Matailobau
Terms for Cross Relatives in Matalobau

<table>
<thead>
<tr>
<th>Generation</th>
<th>Kin Term</th>
<th>Primary Genealogical Referent</th>
</tr>
</thead>
<tbody>
<tr>
<td>(G_{-1}^{12})</td>
<td>a. taitai</td>
<td>MF</td>
</tr>
<tr>
<td>(G_{-1}^{11})</td>
<td>b. nada</td>
<td>FM</td>
</tr>
<tr>
<td>(G_{-1}^{0})</td>
<td>a. momo</td>
<td>MB, SpF</td>
</tr>
<tr>
<td>(G_{-1}^{0})</td>
<td>b. nei</td>
<td>FZ, SpM</td>
</tr>
<tr>
<td>(G_{-1}^{0})</td>
<td>a. tavale-</td>
<td>(\sigma MBCh, FZCh; W) (\varphi MBS, FZS, H)</td>
</tr>
<tr>
<td>(G_{-1}^{0})</td>
<td>b. wati</td>
<td>Sp</td>
</tr>
<tr>
<td>(G_{-1}^{0})</td>
<td>c. raiva-</td>
<td>(\varphi MBD, FZD, BW)</td>
</tr>
<tr>
<td>(G_{-1}^{0})</td>
<td>d. daku</td>
<td>(\varphi HB, ZH) (\sigma BW, WZ)</td>
</tr>
<tr>
<td>(G_{-1}^{1})</td>
<td>a. vatuvu</td>
<td>(\sigma ZCh)</td>
</tr>
<tr>
<td>(G_{-1}^{1})</td>
<td>b. vugo-</td>
<td>ChSp, (\varphi BCh)</td>
</tr>
<tr>
<td>(G_{-1}^{2})</td>
<td>a. makubu-</td>
<td>(\sigma DCh (\varphi DCh = /))</td>
</tr>
<tr>
<td>(G_{-1}^{2})</td>
<td>b. diva</td>
<td>(\varphi Sch)</td>
</tr>
</tbody>
</table>

\(G_{-1}^{12}\): In its reduplication, *taitai* (MF) resembles *tata*, which is a vocative form used by small children for their fathers (*tama*). *Tama* is a reflex of POc *tama*.

\(G_{-1}^{0}\): Hage (2001:499) points out that *tavale-* (\(\sigma MBCh, FZCh, W \); \(\varphi FZS, MBS, H \)) has possible cognates in other Melanesian languages—Mota (Banks Islands, Vanuatu), *tavala/imwa* (“members of the opposite exogamous moiety”); Raga (northern Pentecost, Vanuatu), *tarabe* (“brother-in-law”); Arosi and Sa’a (Makira and Malaita, Solomon Islands), *aharo* (“relatives by marriage”).

Wati-: (Sp) has cognates in the Solomon Islands—Tolo (Guadalcanal) *ati* (“spouse”); Lau (Malaita) *kwai* (“spouse”); Kwaio (Malaita) *kwai* (“husband”); Arosi (Makira) *wai* (“spouse”); Bauro (central Makira) *wai*
Blust (personal communication cited in Hage 2001:499) claims that *wati can be reconstructed for POc or a slightly later protolanguage. Forth (1985:127) notes that the word for wife in several languages spoken in eastern Indonesia takes forms such as wote ("son’s wife," Komodo), wei ("wife," Komodo), wase ("son’s wife," Lauli), faci ("wife," Ngada), fa ("wife," Nage), hai ("wife," Endenese), wai ("wife," Mbae, eastern Flores), and wei ("wife," Bimanese); and so, the Fijian term may have even deeper Austronesian roots than Proto-Oceanic.

Daku (♀HB, ♀ZH; ♂BW, ♂WZ) is probably derived from daku ("the back of a person or thing"), and my informants associated the meanings. Since those who marry should be related as cross kin, a spouse’s same-sex sibling or a same-sex sibling’s spouse will also be cross kin to ego, ideally tavalena (ego’s cross cousin). But ego’s own marriage (or that of ego’s same sex sibling) transforms the relationship between these opposite sex cross cousins. The HeB and yBW have a respect relationship, and they must avoid any hint of impropriety. Figuratively speaking, they turn their backs on one another (cf. Nayacakalou 1955:49, Toren 1990:55, and Quain 1948:272 on the “small wife” taboo).

Raiva- (♀MBD, FZD, BW) is a reflex of Proto-Oceanic *ipaR: WB, HZ + ra-, an honorific prefix combined with certain terms for female relatives of ego’s generation (i.e. ratukaqu, “my older sister”).

G+: Vugo- (ChSp, ♀BCh) is a reflex of POc *pungao: Sp, ChSp

Makubuqu (DCh) is a reflex of POc *makumpu (ChCh).

Because Hage (2001) cites them as evidence in support of his thesis that the Dravidian system(s) of Fiji developed endogenously and represent(s) a departure from the logic of the ancestral Proto-Oceanic system, two Fijian terms, momo (MB, SpF) and nei (FZ, SpM), merit discussion. Like tavalae- they reflect equivalences that are central to the terminology’s Dravidian structure. The problem presented by momo, Hage states, is that it has no known cognates outside of Fiji (Paul Geraghty, personal communication, cited in Hage 2001:499). Instead, two unrelated terms have been reconstructed for Proto-Oceanic for the meaning “mother’s brother,” matuqa and (qa)lawa (Pawley and Ross 1995, Chowning 1991). (The meaning “♂ZCh” has also been attributed to (qa)lawa.) To date only a few affinal terms have been reconstructed for Proto-Oceanic: *gasawa (Sp), *qipaR (HZ, WB), *pungao (SpP), and *rawa (SpP) (Chowning 1991:68).
However, none of these terms’ reconstructed meanings indicate a prescriptive marriage rule. (For example, if the reconstructed meaning(s) of *pungao (“spouse’s parent”) included MB and FZ, prescriptive bilateral cross cousin marriage would be indicated.)

The Proto-Oceanic term reconstructed for the meaning “mother’s brother,” *matuqa, is derived from a Proto-Malayo-Polynesian word reconstructed by Blust (1980a:213) as *ma(n)tuqa with the meaning MB/WF. Blust’s analysis is pertinent here since it is crucial to Hage’s (2001) argument. In a later publication, Blust (1993:63) extended the reconstructed meaning of *matuqa to include MBW and WM. These equations (MB=WF=MBW=WM) are indicative of a system of asymmetric exchange in which male egos would be marrying women equivalent to their MBD but not their FZD.

Among the thirteen languages that Blust listed as witnesses in his 1980 publication, ten extend words derived from the Proto-Austronesian term *ma(n)tuqaS to refer to HF and HM as well as WF and WM. If the meaning were reconstructed to reflect the tendency of Western Malayo-Polynesian languages to assign the broader meaning “SpP,” we would have the equations MB=WF=WM=HF=HM, but this would suggest a system of bilateral cross cousin marriage. Blust noted in a footnote that the meaning of Proto-Malayo-Polynesian *ma(n)tuqa could include HF and HM, but in the text itself he continued to refer to Proto-Malayo-Polynesian *ma(n)tuqa as a term whose referents indicated matrilateral cross cousin marriage (that is, WF=WM=HF; cf. Aberle 1980:228).

Later in the same article, Blust used the reconstructed meaning of Proto-Malayo-Polynesian *ma(n)tuqa (MB=WF≠HF) as partial justification for the reconstructed meanings of a Proto-Malayo-Polynesian term, *(dD)awa. He reconstructs the meaning of Proto-Oceanic *(dD)awa as a self-reciprocal term meaning “MB/ZCh” and the meaning of the Proto-Eastern Malayo-Polynesian *(dawa as “ChSp.” But the reconstruction of the Proto-Malayo-Polynesian source word *(dD)awa requires a choice between alternatives. Cognates in Eastern Malayo-Polynesian languages that he lists have glosses of “child-in-law” and a Central Malayo-Polynesian language, Kambera (eastern Sumba), has the gloss σZCh and ♯BCh. A reconstruction of the meaning of Proto-Central-Eastern Malayo-Polynesian *(dD)awa as “child’s spouse and opposite sex sibling’s child” would again suggest bilateral cross cousin marriage. Blust (1980a:213–14) justifies limiting his reconstruction of the Proto-Malayo-Polynesian (or Proto-Central-Eastern Malayo-Polynesian?) term as meaning σZS/σDH (the reciprocal of σMB/WF) on the grounds that this reconstruction is compatible with his earlier reconstruction of *ma(n)tuqa as MB=WF ≠ HF. But, as already noted, his reconstruction of the meaning of Proto-Malayo-Polynesian *ma(n)tuqa brushes aside linguistic evidence suggestive of a bilateral cross cousin marriage rule.
In addition to MB, another relationship central to the determination of whether marriage in the ancestral Austronesian world was symmetric or asymmetric is that between FZ and BCh. If FZ is equated with SpM, a bilateral cross cousin marriage rule would be indicated. Blust (1980a) reconstructed the Proto-Malayo-Polynesian term *aya for the meaning FZ(=SpM). Among the cognates that he assembled as evidence are words in four Western Malayo-Polynesian languages and two Central Malayo-Polynesian languages that are glossed as “father,” and cognates in one Formosan language, three Western Malayo-Polynesian languages, two Central Malayo-Polynesian languages, and one Eastern Malayo-Polynesian language that are glossed as “mother” (Blust 1980a:216). None of his non-Oceanic witness languages (e.g., his Western Malayo-Polynesian examples) have reflexes of *aya with the meaning FZ. It is significant that the cognates listed refer to both male and female relatives. But Blust pointed out that there are much better candidates for the meanings “mother” and “father” in Proto-Malayo-Polynesian (i.e., *(t)ama and *(t)ina). Blust reconstructed the meaning “FZ” for the Proto-Malayo-Polynesian *aya to “fill the gap” so to speak, noting that nowhere do reflexes of the term include affinal meanings. He justified his reconstruction partly by his earlier reconstruction of *ma(n)tuqa and partly by the (mainly Oceanic) linguistic evidence.

Among the Oceanic languages he cited as examples in which reflexes of *aya mean “FZ” are Motu (lala, FZ/BCh) and Dobuan (yaia-na, “female of parental generation of father’s village”). Chowning (1980:232) was critical of Blust’s reconstruction and pointed out:

Both Motu and Dobuan terms designate the MBW as well as the FZ (Seligman 1910:67, Fortune 1932:41). This extension is exceedingly common (see further examples in Rivers) and applies also to the ‘MB’ term which also = FZH. If the MB is a potential affine, his wife is usually called by the same term as FZ, and thanks to sister exchange, sometimes the same person, is also one.

It seems, then, at crucial points in his argument Blust’s (1980a) analysis reflected a commitment to a view of ancestral Austronesian society as characterized by a hierarchical asymmetric marriage rule (i.e., one requiring marriage between φMBD and φFZS). Hage’s (2001) argument relies on this linguistic reconstruction and reflects the same model of asymmetric alliance. Reconstruction of a term for MB is central to both authors’ arguments. Blust (1980a) uses his reconstruction of the Proto-Malayo-Polynesian *ma(n)tuqa to support particular reconstructions of other terms, and Hage (2001) emphasizes the claim that the Fijian term momo (MB=FZH=SpF) has no external cognates and cannot be derived from Proto-Oceanic, and no affinal meanings can be reconstructed for the Proto-Oceanic term for MB, *matuqa. Hage concluded that, crucial as they are to the Dravidian structure of the Fijian terminologies, the equivalences
MB=FZH=SpF represent an endogenous development and a departure from the logic of the Proto-Oceanic system.

With respect to Blust’s reconstructions for the “mother’s brother,” Forth (1990) has pointed out that Dempwolff (1938:105) put forward a legitimate competitor to Proto-Malayo-Polynesian *ma(n)tuqa and Proto-Austronesian *ma(n)tuqaS (“MB”), the Proto-Austronesian word *mama. Forth’s argument is relevant here because the kintype referents that can be reconstructed for *mama are indicative of bilateral cross cousin marriage, not asymmetric exchange, the form of marriage rule that Blust (1980a) attributed to Proto-Malayo-Polynesian society. In a footnote, Blust acknowledged that Proto-Malayo-Polynesian *mama can be reconstructed to mean “MB” but concluded (with insufficient supporting evidence, Forth claims) that it “was a vocative or address form used by small children” (Blust 1980a:212 n. 13).

The impetus for Forth’s focus on terms for mother’s brother came from the observation that cognates for the east Sumbanese (Indonesia) word meaning “FZ” (=FZH), mamu, often had the meaning “MB” in related languages. Since the equation FZ=MB is unusual, he posed the question of how, if the Sumbanese term was truly cognate with these terms in other languages, could a single proto-form have given rise to reflexes with these different meanings. He hypothesized that a proto-form might once have equated MB and FZH (an equation suggestive of symmetric exchange) but not FZ. In time the term for FZH was extended to FZ, but with the development of a system of asymmetric alliance, a new term for MB (tuya) had to be adopted. Forth (1990:378) identified reflexes of Proto-Austronesian *mama in two languages of Formosa, nine languages spoken in western Indonesia and the Philippines, eleven languages of eastern Indonesia, and one Oceanic language (see Table 2).

Forth’s (1990) linguistic data are not cited here to argue that Proto-Austronesian/Proto-Malayo-Polynesian *mama rather than *ma(n)tuqaS/ *ma(n)tuqa should be reconstructed for the meaning “mother’s brother.” Nor is it cited to argue that Fijian momo should be added to this list of cognates as a reflex of Proto-Malayo-Polynesian *mama. However, in the eastern Indonesian languages the terms for MB are extended to FZH and WF, and those that extend the term for MB to FZH, WF, and HF, equations indicative of symmetric alliance are marked with an asterisk in Table 2. (In the case of Komodo, however, the equations indicate asymmetric rather than symmetric exchange.) Blust’s (1980a:213, n. 14) reconstruction of Proto-Malayo-Polynesian *ma(n)tuqa, remember, could (should?) include the meanings WM, HF, and HM as well as MB, giving Proto-Malayo-Polynesian *ma(n)tuqa a range of meanings similar
Table 2
Possible Reflexes of PAN *mama* (adapted from Forth 1990:378)

Atayalic (Formosa)
- **Atayal**
 - *mama¹* FB, MB
- **Sedeq**
 - *mama* FB, MB

Western Indonesia and the Philippines (Western Malayo-Polynesian)
- **Bahasa Indonesia/Malay**
 - *mama, mamak* “maternal uncle, aunt”
- **Minangkabau** *mama-k*
 - MB
- **Ngaju**
 - *mama* MB
- **Karo Batak**
 - *mama, mami* MB, WF MBW, WM
- **Redjang**
 - *mama, mamang* MeB, FeB MyB, FyB
- **Balinese**
 - *memen* M, MZ, FZ, FBW, MBW
- **Tagalog**
 - *mama* MB
- **Tiruray (Mindanao)**
 - *momo* FB, MB
- **Cotabato Manobo (Mindanao)**
 - *momo* MB, FB

Eastern Indonesia (Central Malayo-Polynesian)
- **Komodo**
 - *mamo* FZ, FZH, HF, HM
- **Lamba-Leda Tenggara**
 - *mama* MB
- **Central Manggarai**
 - *amang* MB, FZH, WF*
- **Rembong (western Flores)**
 - *mama* MB, FZH, WF*
- **Ngadha (central Flores)**
 - *mame* FB, MB
- **Nage (central Borneo)**
 - *mame* FZ, MBW, sometimes MZ
- **Ma’u Nori**
 - (Keo region, central Flores)
 - *mame* MB
- **Ende**
 - (ngao dialect, central Floresa)
 - *mameh* MB, FZ
- **Tana ‘Ai (eastern Flores)**
 - *mame* MB, FZH, WF, HF*
- **Tanebar-Evav (Kei Islands)**
 - *memen* MB, FZH*
- **Tanimbar**
 - (northern dialect of Yamdena)
 - *memi* MB, FZH, WF, HF*
- **Atimelang (Alor)**
 - *mama* F, FB, MB

Oceanic
- **Ikiti (Vanuatu)**
 - *mama* MB
to *amang/mama/mame* in the eastern Indonesian examples above. In other words, an argument could be made that both candidates for the meaning “mother’s brother” in Proto-Malayo-Polynesian (*ma(n)tuqa* and *mama*) should be reconstructed to include kin types indicative of a Dravidian-type bilateral cross cousin marriage rule (i.e., MB=FZH=SpF).

It seems, therefore, that the linguistic evidence for an ancestral Proto-Malayo-Polynesian or Proto-Austronesian system based on asymmetric exchange is open to question. Only by excluding legitimate kin type referents suggestive of bilateral cross cousin marriage can the meaning of Proto-Malayo-Polynesian *ma(n)tuqa* be taken as an indicator of a matrilateral cross cousin marriage rule. Since Blust’s (1980a) reconstruction of Proto-Malayo-Polynesian kinship is a crucial bit of underpinning for Hage’s (2001) argument, the latter is open to challenge. Using Blust’s (1980a) recommended methodology it would have been safer to reconstruct the meaning of Proto-Malayo-Polynesian *ma(n)tuqa* as “MB, WF, WM, HF, and HM.” Given that, the meanings of the Aneityum (Vanuatu) term *matak* (“MB, FZH, SpF”) may represent continuity with a system of symmetric exchange rather than an independent endogenous development, as Hage (2001:497) claimed.

MORE ON MATAILOBAU TERMINOLOGY

As noted above Hage (2001) argued that the Dravidian systems of eastern Melanesia arose endogenously and represent a significant departure from the logic of the ancestral Proto-Oceanic system, and in the previous section Blust’s (1980a) failure to apply his own methodological rules was also noted, lapses that reflected the view that Proto-Malayo-Polynesian (and, for Hage, Proto-Oceanic kinship) was structured by asymmetric exchange. To return now to one variant of the Dravidian systems widespread in Fiji, the terminology used in the Matailobau district of Naitasiri Province on Viti Levu, the emphasis will be on certain alternate generation equations. Under Hage’s theory of endogenous development, these equations are left unaccounted for. However, they are readily explained if the Matailobau terminology evolved from an ancestral tetradic system. According to Allen’s theory, the suspension of such equations is the first step in the transformation of tetradic into Dravidian-type systems. Allen also argues that non-tetradic systems are unlikely to give rise to the full range of equations associated with Dravidian-type systems, even if a rule of bilateral cross cousin marriage is adopted. Hage (2001:495) acknowledges that the cases of Bellona and Taumako, two Polynesian outliers, support Allen in this claim.

Given the distribution of Dravidian-type systems in the Indo-Pacific region (common throughout southern India, scattered cases in insular Southeast Asia,
common again in Australia, and a few scattered cases in eastern Melanesia) it is possible that the explanation is not only evolutionary (as with tetradic theory) but also historic. But first, a brief overview of kinship and marriage in Matailobau will be helpful background for discussing the terminology.

In this area of Viti Levu descent is traced patrilineally and determines membership in clans (mataqali) that are associated with particular roles in the ritual division of labor, that are identified with particular emblematic species (a plant species and a type of fish), and that are distinguished by stocks of personal names (Turner 1986, 1991a). Even when a man and woman of the same village marry, the household’s primary identification is with the localized segment of the husband’s mataqali. Children are linked by “blood” (dra) to other relatives through both mother and father; the bilaterality of this ideology of shared substance is to be expected given the principle of bilateral cross cousin marriage that informs the kinship system. Blood is understood to be a substance that carries with it certain propensities and powers such as a characteristic temperament or the ability to heal certain kinds of ailments. A child’s relationships to the mother’s family and mataqali are extremely important. The child’s mother’s parents are typically affectionate and supportive, but the child’s mother’s brothers (momo) are relatives to whom great respect is due. The sister’s child stands in a vasu relationship to the mother’s brothers and to the mother’s entire mataqali. The behavioral content of the vasu relationship varies from one area to another in Fiji, but everywhere the relationship between MB and ZCh is a special one. (See Turner 1992 for a brief discussion of the relationship between MB and ZS in Matailobau.)

The central feature of this kinship system is the rule of bilateral cross cousin marriage. People say “We marry our tavale (cross cousins).” Indeed, opposite sex cross cousins might refer to one another as watiqu, “my (classificatory) spouse” whether or not they ever marry. People spoke to me about the appropriateness of a mother’s request for the hand of her brother’s daughter on her son’s behalf. But, I know of only one instance in which a man married his actual MBD and one other case in which a man married his FFBDD. Since a man and his FBD are considered “true siblings” (veitacini dina), this woman’s mother was related to the male ego as a FZ and hence, she was herself his FZD. Informants equated these two marriages as examples of marriages between veitavaleni dina (true cross cousins).

The fact that very few people marry the child of their actual mother’s brother or father’s sister does not lessen the validity of their claim that they marry their tavale. In terms of the relationships among in-laws or patterns of connubium between particular patrilines, it may be relevant that most people marry more distant, classificatory cross cousins, but in terms of the logic of the system it
matters not a whit, for marriage with a more distantly related cross cousin satisfies the rule equally well. Nor is their claim (which is really a normative statement and not a statistical generalization) invalidated by occasional marriages between distantly related parallel kin. In most such cases people are able to trace an alternate cross kin relationship that regularizes the marriage. Nor do the small number of marriages between persons who considered themselves nonkin prior to marriage constitute exceptions since the spouses become cross kin through marriage.

Figure 2
Paradigm of Matailobau Kinship Terms

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>//</td>
<td>X</td>
</tr>
<tr>
<td>taitai</td>
<td>tuka-</td>
<td>bubu</td>
</tr>
<tr>
<td>MF</td>
<td>FF, FFZ</td>
<td>MM</td>
</tr>
<tr>
<td>momo</td>
<td>tama-</td>
<td>tina-</td>
</tr>
<tr>
<td>MB, WF, HF</td>
<td>F, FB, MZH</td>
<td>M, MZ, FBW</td>
</tr>
<tr>
<td>tavale-</td>
<td>ratuka-/rataci-</td>
<td>raiva-</td>
</tr>
<tr>
<td>MBCh/FZCh</td>
<td>B, FBS, MZS, FF</td>
<td>Z, FBD, MZD, FFZ</td>
</tr>
<tr>
<td></td>
<td>ΨMBS/FZS</td>
<td>ΨMBD/FZD</td>
</tr>
<tr>
<td>daku</td>
<td>karua</td>
<td>daku</td>
</tr>
<tr>
<td>ΨHB, ΨZH</td>
<td>WZH, HBW</td>
<td>ΨBW, ΨWZ</td>
</tr>
<tr>
<td>wati-</td>
<td></td>
<td>wati-</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>vatuvu</td>
<td></td>
<td>vatuvu</td>
</tr>
<tr>
<td>ΨZS</td>
<td></td>
<td>ΨZD</td>
</tr>
<tr>
<td>vugo-</td>
<td></td>
<td>vugo-</td>
</tr>
<tr>
<td>DH/WP</td>
<td></td>
<td>SW/HP</td>
</tr>
<tr>
<td>diva</td>
<td></td>
<td>diva</td>
</tr>
<tr>
<td>ΨSS</td>
<td></td>
<td>ΨSD</td>
</tr>
<tr>
<td>makubu-</td>
<td></td>
<td>makubu-</td>
</tr>
<tr>
<td>ΨDS</td>
<td></td>
<td>ΨDD</td>
</tr>
</tbody>
</table>
Figure 3

The Matailobau Terminology as a Reflection of Direct Exchange (♂Ego)
The cross/parallel attributes of particular kin terms are most efficiently displayed using the paradigm developed by Trautmann (1981) (see Figure 2). When viewed from the perspective of a male ego, the Matailobau terminology functions as if the universe of kinsmen consisted of just two exogamous patrilines bound in connubium (see Figure 3). Moieties do not exist in this area, and ego’s kin will never fall into just his patriline and one other. (For a discussion of a system of matrilineal moieties in Bua province on Vanua Levu see Quain 1948). But there is a strong tendency towards dualism in Fijian social organization, a characteristic manifested in ceremonial exchanges that accompany life crisis rituals. For ego the most important opposition is between his/her own patriline and the patriline of ego’s mother; this is given fullest expression in funerary rites. While Figure 3 represents a simplified model of the system, this pattern of direct exchange is sometimes approximated. There is a tendency for marriages between patrilines to be repeated in subsequent generations (though the initial alliance will not be repeated in every marriage or even in every generation). Still, a bond of connubium can provide the justification for patrilines of different clans to “stay together” forming a single composite local group.

Figure 3 also shows that this terminology equates certain kin types of alternate generations. Since this type of equation is an important component of Allen’s tetradic systems, this aspect of the Matailobau terminology merits some discussion. First, note that I distinguish here between alternate and adjacent generations. Alternate generations are those of one’s grandparents and one’s grandchildren, and it is in these generations that this terminology makes systematic equations. Adjacent generations are the generations of one’s parents and one’s children. Relationships between parallel kin of adjacent generations are not equated in this terminology. Put another way, parallel kin of adjacent generations do not use self-reciprocal terms for one another. However, cross kin of adjacent generations may be equated. For example, a male Ego and his FFZS are kin of adjacent generations (see Figure 4). Ego refers to A as his momo (MB), and A would normally call Ego (A’s MBSS) his vatuvu (%ZCh) but can also classify him as momo.

While parallel kin of adjacent generations are not equated, parallel kin of alternate generations are, and Figure 5 illustrates some of these equations. With respect to the relationships diagramed in Figure 5, the terminology recognizes only three generations: ego’s own, the first ascending generation, and the first descending generation. Figure 5 is incomplete, of course, since with the exception of FM, FMF, and FMM, it does not illustrate ego’s classification of cross kin. This deficiency is remedied by Figure 6.
Figure 6 shows that equating kin of alternate generations is not as well developed in the cases of cross kin as it is in the cases of parallel kin (see Figure 5). Nonetheless, informants’ tendency to extend the term makubu- (daughter’s child) to their MF as an alternate for taitai and the stated equivalence of makubu- (daughter’s child) and tavale (cross cousin) indicate that cross kin of second ascending and descending generations are seen as equivalent to cross kin of one’s own generation. Similarly, the use of momo (mother’s brother) as an alternate term for MBSS and the predicted extension of the terms momo and nei (father’s sister) to MFF and MFM respectively suggest the structural equivalence of cross kin of the first and third ascending generations. (The extensions of momo to MFF and of nei to MFM are predicted on the basis of the extensions of those terms to FMF and FMM; see Figure 4.)

Despite the bilateral cross cousin marriage rule, the Matailobau terminology is not a tetradic system since it recognizes three, not two, terminological generations. If Austronesian kinship systems are derived from an ancestral tetradic system, that system existed too long ago for linguistic reconstruction to be possible. (Hage [2001:503] appeared willing to entertain the idea that an ancestral tetradic system once existed but earlier than Proto-Austronesian or even Proto-Austro-Tai [prior to 6,500–7,000 years ago?].) In any case the interest here lies in understanding the history of the present Dravidian systems found in Fiji, in Allen’s theory the first stage in the decay of tetradic structures (i.e., the stage resulting from the elimination of alternate generation equations; cf. Hage 2001:503). Note that in the case of the Matailobau terminology the elimination of alternate generation equivalences has not been total.
Figure 5
Alternate Generation Equivalences in Matailobau (Parallel Kin)
Is it true, as Hage (2001) claims, that the Dravidian terminologies of Fiji and others like it in eastern Melanesia represent endogenous development (whether once or several times in different places)? That is, do these Dravidian systems represent a departure from the organization of ancestral Proto-Oceanic society? If so, what explains this transformation, and how can we account for the other types of terminological systems found among the Austronesian speakers of Oceania? Regardless of how one reconstructs Proto-Oceanic (or Proto-Austronesian) kinship, there is the problem of explaining how a single ancestral kinship system gave rise to the variety of systems that exist today. A later section of this article turns to the question of regional variation in kinship systems among the Austronesian speaking peoples of Oceania and beyond.

BIASES IN THE RECONSTRUCTION OF PROTO-MALAYO-POLYNESIAN KINSHIP

Hage (2001) argued that the Dravidian systems of Fiji, southern Vanuatu, and Guadalcanal in the Solomon Islands are a departure from the underlying logic of Proto-Oceanic or Proto-Austronesian kinship, the result of in situ transformations of the ancestral system. His argument relied heavily on Blust’s (1980a) linguistic reconstruction of early Austronesian kin terms and their kin type referents. As noted earlier, at key points in his analysis Blust brushed aside data indicative of a bilateral cross marriage rule in Proto-Malayo-Polynesian society.

Why did Blust (1980a) interpret his data this way? In part his paper was intended to refute Murdock’s reconstruction of early Austronesian society. Murdock (1949:230–31) had hypothesized that ancestral Malayo-Polynesian society was characterized by what he termed Hawaiian-type social organization. That is, it was characterized by Hawaiian cousin terms, bilocal extended families, and bilateral extension of the incest taboo. It lacked exogamous unilineal descent groups, and was organized instead in terms of bilateral kindreds or demes (Murdock 1949:228). Blust (1980a:220) referred to this as the “bilateral hypothesis.” Blust (1980a:206, 221) credited Kroeber (1919) with the first modern statement of the bilateral hypothesis. Kroeber’s paper was a comparative study of the Philippine kinship systems recorded up to that time. In it he argued that certain features of the Philippine systems could be explained by the assumption that early Philippine and Malay society had been organized bilaterally. These features included terminologies that merged lineal and collateral kin, the absence of totems, clans, or any form of exogamous groups, the social equality of women, and the consistency of the system throughout the islands despite the other acculturative changes that had affected Lowland Filipino societies.
Just as Kroeber’s (1919) hypothesis about the bilaterality of early Malayo-Polynesian society had been based on the comparative study of societies in a single region (the Philippines), so did Murdock (1949:229–31) base his reconstruction on a sample which was heavily weighted towards another region within the wider Malayo-Polynesian world, Polynesia. Of the 11 Austronesian-speaking societies listed in his Table 62 (societies with Hawaiian-type social organization), nine are Polynesian, and two of the other three are Melanesian (Blust 1980a:222). Recently, Guermonprez (1998) revived the “bilateral hypothesis” of Proto-Malayo-Polynesian kinship based on a purely formal analysis of Eastern Indonesian kinship terminologies.

Blust’s (1980a) reconstruction of Proto-Malayo-Polynesian kinship also seems to be heavily refracted through a single regional lens, Eastern Indonesia, the only region in the Austronesian-speaking world in which systems of asymmetric exchange predominate. As noted above, in those instances in which the linguistic evidence would justify reconstructions of meanings in protolanguages suggestive of bilateral cross cousin marriage, such as the reconstruction of Proto-Malayo-Polynesian *ma(n)tuqa, Blust opts for reconstructions compatible with an asymmetric system. In other words, at key points the reconstruction seems to reflect more than the linguistic evidence.

On distributional grounds, it appears that a case could be made for what Blust calls the bilateral hypothesis. After all, at the two extremes of the distribution of Malayo-Polynesian languages a preponderance of societies are organized either bilaterally or ambilineally, lack prescriptive marriage rules, and have either Hawaiian or Eskimoan kinship terminologies. To the west these include the areas where Western Malayo-Polynesian languages are spoken, as in the Malay peninsula, the large islands of Western Indonesia, the Philippines, and Madagascar. To the east are the societies of Polynesia. But in between lie the islands of Eastern Indonesia and the Austronesian speaking peoples of Melanesia, many societies in which descent is neither bilateral nor cognatic. This discontinuity in the distribution of bilateral or cognatic societies is problematic for the “bilateral hypothesis.”

RECONSTRUCTING PROTO-OCEANIC KINSHIP TO REFLECT THE TETRADIC HYPOTHESIS

If Proto-Malayo-Polynesian society was characterized by asymmetric exchange as Blust thinks, why did prescriptive matrilateral cross cousin marriage disappear in most daughter societies? And if the Proto-Oceanic kinship system was also based on prescriptive matrilateral cross cousin (MBD) marriage as Hage (2001) argued, why are such systems absent among the Oceanic peoples today?
On the other hand, if Proto-Malayo-Polynesian society had a complex marriage system (i.e., one in which marriageability is defined by the incest taboo with no prescriptive marriage rule) and was characterized by Murdock’s (bilateral hypothesis) Hawaiian-type social organization, there is the problem of explaining how/why classificatory and prescriptive equations arose to produce, not only the Dravidian-type systems of eastern Melanesia, but the full range of kinship systems in Malayo-Polynesian speaking societies today. Allen’s tetradi hypothesis envisions transformations of kinship systems, not through the process of building up entire sets of new equations (synthesis), but by a progressive loss of the equations that produce a tetradi system (dissolution). Hage (2001) argued that such a process of synthesis had occurred in certain eastern Melanesian societies where Dravidian-type systems arose.

For the sake of argument I assume that rather than being the product of endogenous synthesis, as Hage argued, these eastern Melanesian kinship terminologies and the bilateral cross cousin marriage rules that structure them represent continuity with the Proto-Malayo-Polynesian system. It is also possible (but not necessary) to assume the presence of a unilineal descent rule and dual organization in Proto-Malayo-Polynesian society. (See Blust 1980b for an argument for the existence of dual organization in Proto-Malayo-Polynesian society.) Given these assumptions, would it be possible to construct hypotheses, plausible on both formal and historical grounds, that account for the existing regional distribution of kinship systems among Malayo-Polynesian societies?

Western Malayo-Polynesia

In those areas where Western Malayo-Polynesian languages are spoken, except for the Toba Batak of northern Sumatra, the majority of peoples of Western Indonesia, the Malay peninsula, the main islands of the Philippines, and much of Madagascar are organized bilaterally. Fox (1995) noted a correlation between this bilaterality, island size, and the possibilities for territorial expansion by the original Austronesian settlers. When they arrived in these areas, indigenous hunter-gatherers either retreated into the interiors or were absorbed and transformed.

The principal mode of social differentiation in these societies [i.e., Austronesian societies of the larger islands of the Philippines and western Indonesia] is relative age (i.e. elder/younger) which may, in certain contexts, provide the means of creating an extended order of precedence . . . but more generally offers an opportune line of fission, whereby the younger—or in a few cases, the elder—sibling simply moves away to found a new settlement. (Fox 1995:223)
Incorporating Fox’s observations, I hypothesize that in this pioneer expansion, established relations of symmetry and equivalence based on bilateral cross cousin marriage gave way to more open marriage systems. The emphasis on the brother-sister bond, important in both asymmetric and symmetric prescriptive systems, was replaced by a greater emphasis on the husband-wife bond. The nuclear family and bilateral kindred became the medium within which seniority and precedence emerged as the pre-eminent principles of inequality. Genealogies preserved the names of both marriage partners, and both maternal and paternal lines became important to the status of descendants. With the gradual relaxation of the prescriptive marriage rule, the distinctions between cross and parallel collaterals would have disappeared giving rise to either Hawaiian or Eskimoan terminologies.

Millennia after their ancestors departed from Taiwan, many Western Malayo-Polynesian speaking societies were affected by Indian and later by Islamic influences, by emerging states, and by the transformation of tribal or tributary systems into peasant modes of production. I believe that some of these later influences (e.g., the emerging peasant mode of production) strengthened and modified the essentially bilateral organization of some of these societies, but the transformation of the ancestral Malayo-Polynesian system would have begun much earlier. Fox (1995:223) points out that this hiving-off process was not possible on the smaller islands of the Austronesian world nor along the coast of New Guinea, where expansion into the interior was blocked by indigenous non-Austronesian speakers, and where newcomers were limited to narrow coastal footholds or small offshore islands. Of necessity, trading often became an important economic activity for Austronesian settlers under these conditions.

According to Fox, on smaller islands (but not islands too small or resource-poor to support elaborate hierarchies) status rivalry came to be structured by “subtle and elaborate” systems of overlapping principles. This type of status system is associated with elaborated origin traditions and the use of genealogy to establish connections to an original source. A single principle, which Fox (1995) calls “apical demotion,” was used throughout the Malayo-Polynesian world to establish exclusivity of status in such systems. This “dynastic device” is driven by seniority of descent, which insures that “only one line retains status; and within that line, in each generation, ultimately one individual” (Fox 1995:223).

Systems of apical demotion are associated with sacred rulers, like kings, rajas, sultans, or high chiefs, and are characterized by “predatory expulsion” (Fox 1995:224). Individuals or groups of sufficiently high rank become magnets for followers. They may mount challenges against established hierarchies or leave and establish new systems elsewhere. Thus, whether by a lateral hiving off on the large islands of the west or by apical demotion and predatory expulsion, status
rivalry fueled colonization and expansion throughout the Austronesian world, and at the same time, myriad local transformations of the ancestral Proto-Malayo-Polynesian kinship system.

Eastern Indonesia

Both lateral expansion and apical demotion occur in Eastern Indonesia. If elements of an ancestral Malayo-Polynesian system based on symmetric exchange were carried into Oceania, then we must assume that the system was still intact when groups from the southern Philippines established themselves on Sulawesi, while other groups sailed southeast to Halmahera and northwest New Guinea. In other words, I assume that the distinctive features of present-day Eastern Indonesian kinship systems arose later through endogenous transformations of an ancestral system of symmetric exchange.

In the ethnographic present the distinguishing feature of hierarchy in Eastern Indonesia is the degree to which it is structured by asymmetric exchange. Yet, with respect to their kinship terminologies, many of the societies of the region seem imperfectly adapted to matrilateral cross cousin marriage. They include terminological equations that instead imply bilateral cross cousin marriage. (See, for example, Hicks 1985 for the Manggarai of Flores; Lewis 1988 for Tana Ai of eastern Flores; Needham 1980 for western Sumba.) Needham (1984) suggested that the “anomalies” within some Eastern Indonesian systems can be explained as differing degrees of accommodation between a proto-terminology reflecting symmetric exchange and a more recently adopted practice of asymmetric marriage. What would explain this shift from a bilateral to a matrilateral cross cousin marriage rule that Needham (1984) hypothesized? Despite the variations among the kinship terminologies of the region, there are certain features of ideology and exchange that are widely shared by the societies of Eastern Indonesia that, taken together, perhaps provide an answer. They can be summarized as follows:

1. In all cases wife givers are considered superior to their wife takers. This can result in chains of transitive inequality in which, not only is Group A superior to its wife takers (B), but so are those groups that give wives to A. Stable systems of concatenated inequality can be produced and maintained by unidirectional affinal exchange. The superiority of wife givers is associated with the notion that they are “the givers of life” to the group that has received women.

2. Not only are wife givers superior to their wife takers, they are also “male” in relation to those to whom they give women. The perspective here is that of the brother-sister pair within the wife giving group. The brother and his descendants are “male” in relation to the sister and her descendants but also in relation to the group of the sister’s husband. Since, from the perspective of the groups involved,
marriage is always hypogamous, the mother’s brother as wife giver is superior to his sister’s children.

3. The exchange of women is paralleled by exchanges of material goods between wife givers and wife takers. These exchanges involve goods of different types that are often referred to as “male” and “female.” Typically, the gifts given by one side include items of exotic origin (or which once had exotic origins) while gifts from the other side emphasize food, livestock, and other indigenous products. (See, for example, Valeri 1980, Clamagirand 1980, and Schulte Nordholt 1971.)

4. Like the women for which they are exchanged, durable valuables are often seen as sources of life and vitality. The brass gongs, elephant tusks, porcelains, or objects of precious metal are a material connection to ancestors and, perhaps, to the other worlds from which these objects were ultimately derived (see e.g., McKinnon 1991). Objects with names and important histories may cease to circulate and become precious heirlooms for the house or descent group that owns them.

In Eastern Indonesia the material exchanges that accompany marriage are important to rank and prestige, and a back and forth exchange of women between intermarrying groups would entail reciprocal bridewealth payments that cancel each other out (Needham 1980:39). The point is that social reproduction in this region requires flows of ceremonial wealth as well as flows of women, and discussion of the rules that regulate the latter require a culturally informed understanding of the former.

Could the marriage systems of Eastern Indonesia have evolved to provide channels for the flow of exotic goods and have arisen in the context of trade networks? An ancient voyaging corridor does connect the two extremes of the Malayo-Polynesian world—the Malay peninsula and large islands of Western Indonesia on the one hand and Oceania on the other. Throughout the region the exchange objects of greatest value originally arrived through overseas trade. If possession of exotic goods conferred the power and prestige of the worlds from which they derived, a model of marriage that insured a unidirectional flow of such goods would continually reconfirm hierarchical relations between intermarrying groups. Presumably an ancestral kinship system based on direct exchange was gradually modified in the direction of asymmetry to insure this directional flow of exotic wealth.

New Guinea and the Oceanic World

In Western Malayo-Polynesian societies the tendency towards hierarchy of the ancestral Malayo-Polynesian system, structured in terms of seniority, evolved
differently than in Eastern Indonesia. Junior lines hiving off to establish new orders of precedence elsewhere was facilitated by the size of the lands into which they were expanding and the organizational advantages they had over indigenous hunter-gatherers. Kinship systems emphasizing bilaterality rather than lineality were the result. Eastward in New Guinea and beyond, the regional patterns that have been discerned break up. East of the Birds Head Peninsula of New Guinea, among the Austronesian speakers of Melanesia, bilaterality is uncommon and systems of asymmetric exchange absent. Here, Oceania, the Proto-Oceanic kinship system retained the symmetrical features of ancestral Proto-Central-Eastern Malayo-Polynesian (the ancestral language from which all of the Austronesian languages of Eastern Indonesia and Oceania are derived.) How, then, can the diversity of kinship systems among the Austronesian speakers of Melanesia be understood? This is similar to the problem of explaining the diversity of Melanesian languages themselves.

The diversity among the Austronesian speaking peoples of Melanesia is partly a consequence of contact with diverse non-Austronesian peoples, but also as a result of differing island environments and complex local histories. Another factor to consider is the virulence of malaria. In Papua New Guinea, for example, malaria is holoendemic in lowland areas. Today all four species of Plasmodium that cause malaria in humans are endemic, but falciparum, which causes the most serious forms of the disease, is the most common (Muller et al. 2003). The history of malaria in the Southwest Pacific is imperfectly understood, but whether it was brought by Austronesian speakers or preceded their spread into Oceania, it would not have been new to those newcomers. Indeed, like their congeners in island Southeast Asia, their gene pool would have included alleles that result in limited immunity to malaria. These include the genes responsible for \(\alpha \)-thalassemia (Flint, et. al. 1986), Gm polymorphisms (Kelly 1990, 1996; Clark and Kelly 1993), and G6PD deficiency (Kaneko 2001). This enabled them to occupy malarial lowland environments, which were perhaps avoided by non-Austronesian populations lacking the advantageous genes (Clark and Kelly 1993).

In endemic areas only a minority of individuals who carry the parasite will come down with the disease, and in most individuals who develop symptoms, the disease will run its course without complications. However, in a small number of cases severe complications such as cerebral malaria will occur. In the absence of scientific understanding of the disease, severe sickness and death would have an unpredictable quality. Since infection with new strains increases the chances of illness, anything that increases exposure to new strains or lowers resistance (such as fatigue or anxiety) also increases the chances of illness. Travel outside of one’s home territory might provide such conditions.
In many Melanesian societies, non-Austronesian and Austronesian alike, sickness and death are frequently understood to be the consequences of sorcery (Turner 1991b), and malaria is a mechanism that helps explain the “paranoid ethos” (Schwartz 1973) of Melanesia, as well as the political fragmentation and cultural and linguistic diversity of the region. The variation found with kinship and marriage is intimately connected with the other forms of diversity encountered there. Trade and intermarriage have been counter forces aiding in the formation of regional networks (Terrell 2001), but the dominant pattern among the Austronesian speaking peoples of Melanesia has been the careful maintenance of territorial, linguistic, and cultural boundaries. The political fragmentation characteristic of Melanesia as a region does not explain how or why the Proto-Oceanic kinship system changed, but it did insure that, when changes occurred, they were often divergent.

Remote Oceania

The Proto-Oceanic linguistic community began to break up around 3,500 years ago (Pawley and Ross 1995). I assume that a system of symmetric exchange based on bilateral cross cousin marriage continued until at least that time and was carried to Vanuatu and Fiji by Lapita settlers. In Fiji it evolved locally in the same way as the language, giving rise to numerous local variations. But in Eastern Polynesia and a millennium or so later, we again find complex marriage systems emerging along with bilateral or ambilineal descent and Hawaiian-type terminologies. In Western Polynesia, however, the situation is different. Settled at approximately the same time as Fiji and intermittently in contact with one another and with Fiji, Tonga and Samoa retained an emphasis on dualism in their kinship systems (descendants of the brother vs. descendants of the sister). Patterns of avoidance between brother and sister and special kin terms for FZ, MB, and σZCh are also common in Western Polynesia.

In Eastern Polynesia, only in the Marquesas, which seem to be the earliest-settled group in the region, is the Western Polynesian pattern retained (Goldman 1970). Throughout the rest of Eastern Polynesia, bilateral organization and Hawaiian-type terminologies repeat the pattern characteristic of Western Malayo-Polynesian societies. Murdock (1949) saw this as a consequence of the retention of the basic bilateral features of ancestral Malayo-Polynesian social organization in these widely separated regions. In contrast, Burrows (1938:125) interpreted the Eastern Polynesian terminologies, some of which do not even distinguish between male and female parents, as simplifications of more complex Western Polynesian prototypes, which are closest to the Fijian systems in their emphasis on opposite sex siblings as linking relatives. Thus, moving eastward from Fiji,
there is a progressive weakening of the contrast between brother and sister as paths of relationship. That contrast is the basis of the cross/parallel distinction upon which most Fijian systems are based.

CONCLUSIONS

This article has attempted to explain why an ancestral kinship system evolved in different ways in regions of Malayo-Polynesia. The attempt is based on very different assumptions than Hage’s (2001) interpretation of Proto-Oceanic kinship. Pace Hage, it is unlikely that the ancestral Malayo-Polynesian kinship system was structured in terms of prescriptive asymmetry or that such a system was carried by initial Austronesian settlers into Oceania, Blust’s (1980a) linguistic reconstructions notwithstanding. It is also unlikely that the Dravidian systems of Oceania are endogenous transformations of that presumed ancestral system, as Hage suggested. My comments here, however, are limited to Fiji. Assuming that systems of kinship classification reflect cultural understandings of the basis for relatedness, patterns of residence, descent rules, modes of subsistence, historical influences, and so on, what explains why Fijian systems shifted away from a system of matrilateral cross cousin marriage towards a Dravidian system? Such leftward shifts have not been documented in other parts of the world. Why Fiji, southern Vanuatu, and Guadalcanal?

In his discussion of cross cousin marriage in the Polynesian outliers of West Futuna-Aniwa, Hage noted the practice of cross cousin marriage in other Polynesian societies as well. He lists three other outliers (Rennell, Bellona, and Taumako) and the Marquesas. To these could be added Tonga, where the practice of matrilateral cross cousin marriage developed as a means of linking chiefly titles in a hierarchy (Gailey 1987). In the Marquesas and Tonga, cross cousins are classified as siblings while in Bellona (and Rennell) they are given a special term, ha’anga. In Taumako, cross cousins were called by the terms for siblings plus a special modifier. With the exception of the Taumako term ingoa (MB=FZH #F=FB) and the Rennellese term igamatu (εZCh=ChSp), none of the terminologies of these societies had prescriptive equations (i.e., equations of kin types reflecting cross cousin marriage; Hage 2001). Hage notes that “the evidence suggests, consistent with Allen’s theory [concerning the evolution of kinship systems], that the introduction of cross cousin-marriage may generate terms for cross cousin [sic] but not for all the equations and discriminations characteristic of a Dravidian system” (Hage 2001:495).

The terminology of West Futuna-Aniwa does make the characteristic equations, however, presumably to conform to the Dravidian systems of the Melanesians with whom they intermarried. But what about those Melanesian
systems, particularly the Dravidian systems of Fiji? How do we explain their comprehensive Dravidian equations? From what type or types of kinship systems did they evolve? Are they the end products of local transformations of an ancestral Malayo-Polynesian system of prescriptive asymmetry? In the final analysis, Hage’s argument for their endogenous development (as opposed to the historical priority of symmetrical systems throughout the Malayo-Polynesian world) rests heavily on Blust’s (1980a) linguistic reconstructions. As argued here, when it comes to the kin type referents of the reconstructed terms, Blust’s analysis appears to have been guided by an extra-linguistic assumption about the priority of asymmetric exchange. This assumption likely reflected anthropology’s then understanding of Eastern Indonesia as a cultural region.

Hage’s (2001) analysis requires adopting a series of ad hoc hypotheses, specific to each society, to explain why an ancestral Proto-Oceanic system based on matrilateral cross cousin marriage would have been transformed by the syntheses of whole, new systems of equations giving rise to the wide range of other types of systems found in Oceania, and why the prescriptive asymmetry said to characterize the ancestral system has disappeared from the region. Allen’s tetradic hypothesis has the advantage of providing a single coherent hypothesis to explain how such diversity might have arisen through the rupture of existing equations. The alternate generation equations that exist in the Fijian system can then be seen as remnants of a tetradic system of a more distant past.

BIBLIOGRAPHY

268 ETHNOLOGY

