setwd("C:/Users/Nikol/Documents/Ciguatara Project/Data/CXT Data")
All = read.csv("CTX_All_NR.csv")
dim(All) #examine data
## [1] 197  23
head(All,7)# examine data
##    ï..Site  Tag Species   TL Age site_coral herbivore CTX3 EC50 CXT1B Buffer
## 1 Anaehoom AB02    CEAR   35  10      14.23   1827.46    0    0     0     40
## 2 Anaehoom AB05    CEAR   47  22      14.23   1827.46    0    0     0     40
## 3 Anaehoom AB06    CEAR 29.5   7      14.23   1827.46    0    0     0     40
## 4 Anaehoom AB07    CEAR 31.5   9      14.23   1827.46    0    0     0     40
## 5 Anaehoom AB11    CEAR 22.5  10      14.23   1827.46    0    0     0     40
## 6 Anaehoom AB12    CEAR   29   5      14.23   1827.46    0    0     0     40
## 7 Anaehoom AB22    CEAR 41.5  12      14.23   1827.46    0    0     0     40
##   boulder hard_bottom soft_bottom coral unknown    wave effluent fishing
## 1   0.000           0           0 1.000       0 2.62089          27.8167
## 2   0.128           0           0 0.872       0 2.64007          35.3690
## 3   0.000           0           0 1.000       0 2.62772          26.8266
## 4   0.000           0           0 1.000       0 2.62876          34.4041
## 5   0.000           0           0 1.000       0 2.61802          25.8674
## 6   0.369           0           0 0.631       0 2.61319          39.4247
## 7   0.000           0           0 1.000       0 2.61736     22.3 21.0566
##   mean_depth BAA3 BAA5 BAA7
## 1    -5.9999   67   69  121
## 2    -4.9986   67   69  121
## 3    -6.6052   67   69  121
## 4    -5.5554   67   69  121
## 5    -5.9993   67   69  121
## 6    -2.6409   67   69    .
## 7    -6.7602   67   69  121

Load required packages

library(GlmSimulatoR)
## Warning: package 'GlmSimulatoR' was built under R version 4.0.5
library(ggplot2)
library(cplm, quietly = TRUE)
set.seed(1)
library(ggplot2)
library(ggpubr)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(AICcmodavg)
library(tweedie)
library(statmod)  # For the `glm.tweedie` function
library(Metrics)  # For AIC calculation
## Warning: package 'Metrics' was built under R version 4.0.5
library(pscl)
## Classes and Methods for R developed in the
## Political Science Computational Laboratory
## Department of Political Science
## Stanford University
## Simon Jackman
## hurdle and zeroinfl functions by Achim Zeileis
library(psych)
## 
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
## 
##     %+%, alpha
library(tidyr)
## 
## Attaching package: 'tidyr'
## The following objects are masked from 'package:Matrix':
## 
##     expand, pack, unpack

Create subset of data for each species

CTST = subset(All, Species =="CTST")
dim(CTST) #examine data
## [1] 109  23
headTail(CTST,2)# examine data
##      ï..Site  Tag Species   TL  Age site_coral herbivore CTX3 EC50 CXT1B Buffer
## 89  Anaehoom AB01    CTST   13    6      14.23   1827.46    0    0     0     20
## 90  Anaehoom AB03    CTST   13    4      14.23   1827.46    1    1   0.4     20
## ...     <NA> <NA>    <NA> <NA> <NA>        ...       ... <NA> <NA>  <NA>    ...
## 194    Puako PU14    CTST   13    3       4.13   2827.84    0    0     0     20
## 195    Puako PU15    CTST   15    5       4.13   2827.84    .    .     .     20
## 196    Puako PU22    CTST   18    7       4.13   2827.84    .    .     .     20
## 197    Puako PU28    CTST   15    6       4.13   2827.84    0    0     0     20
##     boulder hard_bottom soft_bottom coral unknown wave effluent fishing
## 89        0           0           0     1       0 2.61             37.6
## 90        0           0           0     1       0 2.61            37.36
## ...     ...         ...         ...   ...     ...  ...     <NA>     ...
## 194       0           0           0     1       0 1.99 13035.25   28.52
## 195       0           0           0     1       0 2.04  5192.94   38.49
## 196       0           0           0  0.96    0.04 1.91  9700.96   39.16
## 197       0           0           0  0.96    0.04 1.91  9718.17   39.24
##     mean_depth BAA3 BAA5 BAA7
## 89     -4.1565   67   69    .
## 90     -4.0627   67    .    .
## ...       <NA> <NA> <NA> <NA>
## 194    -5.8475   67    .    .
## 195     -4.808   67   68    .
## 196    -5.5423   67   68  119
## 197    -5.0679   67   68    .
CEAR = subset(All, Species =="CEAR")
dim(CEAR) #examine data
## [1] 88 23
headTail(CEAR,2)# examine data
##      ï..Site  Tag Species   TL     Age site_coral herbivore CTX3 EC50   CXT1B
## 1   Anaehoom AB02    CEAR   35      10      14.23   1827.46    0    0       0
## 2   Anaehoom AB05    CEAR   47      22      14.23   1827.46    0    0       0
## ...     <NA> <NA>    <NA> <NA>    <NA>        ...       ... <NA> <NA>    <NA>
## 85     Puako PU37    CEAR   32  8.1148       4.13   2827.84    1    3 0.13333
## 86     Puako PU38    CEAR   38       9       4.13   2827.84    1  5.5 0.07273
## 87     Puako PU39    CEAR   34       8       4.13   2827.84    1    2     0.2
## 88     Puako PU40    CEAR 48.5 21.6393       4.13   2827.84    1  0.3 1.33333
##     Buffer boulder hard_bottom soft_bottom coral unknown wave effluent fishing
## 1       40       0           0           0     1       0 2.62            27.82
## 2       40    0.13           0           0  0.87       0 2.64            35.37
## ...    ...     ...         ...         ...   ...     ...  ...     <NA>     ...
## 85      40       0           0        0.14  0.84    0.02 2.25  1302.29   27.05
## 86      40       0           0        0.14  0.84    0.02 2.25  1302.29   27.05
## 87      40       0           0        0.14  0.84    0.02 2.25  1302.29   27.05
## 88      40       0           0        0.14  0.84    0.02 2.25  1302.29   27.05
##     mean_depth BAA3 BAA5 BAA7
## 1      -5.9999   67   69  121
## 2      -4.9986   67   69  121
## ...       <NA> <NA> <NA> <NA>
## 85     -5.7854   61   67  101
## 86     -5.7854   61   67  101
## 87     -5.7854   61   67  101
## 88           .   61   67  101
CTST$CXT1B = as.factor(CTST$CXT1B)
CTST$boulder = as.numeric(CTST$boulder)
CTST$hard_bottom = as.numeric(CTST$hard_bottom)
CTST$soft_bottom = as.numeric(CTST$soft_bottom)
CTST$coral = as.numeric(CTST$coral)
CTST$unknown = as.numeric(CTST$unknown)
CTST$wave = as.numeric(CTST$wave)
CTST$effluent = as.numeric(CTST$effluent)
CTST$fishing = as.numeric(CTST$fishing)
CTST$mean_depth = as.numeric(CTST$mean_depth)
CTST$BAA3 = as.numeric(CTST$BAA3)
## Warning: NAs introduced by coercion
CTST$TL = as.numeric(CTST$TL)
## Warning: NAs introduced by coercion
CTST$Age = as.numeric(CTST$Age)
## Warning: NAs introduced by coercion
str(CTST)
## 'data.frame':    109 obs. of  23 variables:
##  $ ï..Site    : chr  "Anaehoom" "Anaehoom" "Anaehoom" "Anaehoom" ...
##  $ Tag        : chr  "AB01" "AB03" "AB04" "AB08" ...
##  $ Species    : chr  "CTST" "CTST" "CTST" "CTST" ...
##  $ TL         : num  13 13 13.5 12 13.5 14.5 12.5 13 12.5 15.5 ...
##  $ Age        : num  6 4 3 2 8 ...
##  $ site_coral : num  14.2 14.2 14.2 14.2 14.2 ...
##  $ herbivore  : num  1827 1827 1827 1827 1827 ...
##  $ CTX3       : chr  "0" "1" "0" "1" ...
##  $ EC50       : chr  "0" "1" "0" "0.75" ...
##  $ CXT1B      : Factor w/ 22 levels ".","0","0.008",..: 2 16 2 17 16 16 15 4 2 11 ...
##  $ Buffer     : int  20 20 20 20 20 20 20 20 20 20 ...
##  $ boulder    : num  0 0 1 0 0 0 1 0.128 0 0.128 ...
##  $ hard_bottom: num  0 0 0 0 0 0 0 0 0 0 ...
##  $ soft_bottom: num  0 0 0 0 0 0 0 0 0 0 ...
##  $ coral      : num  1 1 0 1 1 1 0 0.872 1 0.872 ...
##  $ unknown    : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ wave       : num  2.61 2.61 2.61 2.61 2.61 ...
##  $ effluent   : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ fishing    : num  37.6 37.4 39.9 37.7 37.3 ...
##  $ mean_depth : num  -4.16 -4.06 -1.34 -3.15 -4.25 ...
##  $ BAA3       : num  67 67 67 NA 67 NA 67 67 67 67 ...
##  $ BAA5       : chr  "69" "." "." "." ...
##  $ BAA7       : chr  "." "." "." "." ...
# Standardize all numeric columns (excluding factors, character, etc.)
numeric_cols <- sapply(CTST, is.numeric)
CTST[numeric_cols] <- scale(CTST[numeric_cols])
headTail(CTST)
##      ï..Site  Tag Species    TL   Age site_coral herbivore CTX3 EC50   CXT1B
## 89  Anaehoom AB01    CTST -0.85  1.49       0.07     -0.91    0    0       0
## 90  Anaehoom AB03    CTST -0.85 -0.09       0.07     -0.91    1    1     0.4
## 91  Anaehoom AB04    CTST -0.57 -0.88       0.07     -0.91    0    0       0
## 92  Anaehoom AB08    CTST -1.42 -1.67       0.07     -0.91    1 0.75 0.53333
## ...     <NA> <NA>    <NA>   ...   ...        ...       ... <NA> <NA>    <NA>
## 194    Puako PU14    CTST -0.85 -0.88      -2.46     -0.59    0    0       0
## 195    Puako PU15    CTST  0.28   0.7      -2.46     -0.59    .    .       .
## 196    Puako PU22    CTST  1.99  2.28      -2.46     -0.59    .    .       .
## 197    Puako PU28    CTST  0.28  1.49      -2.46     -0.59    0    0       0
##     Buffer boulder hard_bottom soft_bottom coral unknown  wave effluent fishing
## 89     NaN   -0.36        -0.1       -0.17  0.44   -0.25 -0.74     <NA>    0.69
## 90     NaN   -0.36        -0.1       -0.17  0.44   -0.25 -0.74     <NA>    0.66
## 91     NaN    5.51        -0.1       -0.17 -3.29   -0.25 -0.74     <NA>    0.95
## 92     NaN   -0.36        -0.1       -0.17  0.44   -0.25 -0.74     <NA>     0.7
## ...    ...     ...         ...         ...   ...     ...   ...      ...     ...
## 194    NaN   -0.36        -0.1       -0.17  0.44   -0.25 -1.41     2.03   -0.36
## 195    NaN   -0.36        -0.1       -0.17  0.44   -0.25 -1.36    -0.09    0.79
## 196    NaN   -0.36        -0.1       -0.17  0.29   -0.06  -1.5     1.13    0.87
## 197    NaN   -0.36        -0.1       -0.17  0.29   -0.06  -1.5     1.13    0.88
##     mean_depth BAA3 BAA5 BAA7
## 89        0.99 0.97   69    .
## 90        1.02 0.97    .    .
## 91        1.77 0.97    .    .
## 92        1.27 <NA>    .    .
## ...        ...  ... <NA> <NA>
## 194       0.53 0.97    .    .
## 195       0.81 0.97   68    .
## 196       0.61 0.97   68  119
## 197       0.74 0.97   68    .
CTST$CXT1B = as.numeric(CTST$CXT1B)
# Replace missing values (NA) with 0
CTST[is.na(CTST)] <- 0
headTail(CTST)
##      ï..Site  Tag Species    TL   Age site_coral herbivore CTX3 EC50 CXT1B
## 89  Anaehoom AB01    CTST -0.85  1.49       0.07     -0.91    0    0     2
## 90  Anaehoom AB03    CTST -0.85 -0.09       0.07     -0.91    1    1    16
## 91  Anaehoom AB04    CTST -0.57 -0.88       0.07     -0.91    0    0     2
## 92  Anaehoom AB08    CTST -1.42 -1.67       0.07     -0.91    1 0.75    17
## ...     <NA> <NA>    <NA>   ...   ...        ...       ... <NA> <NA>   ...
## 194    Puako PU14    CTST -0.85 -0.88      -2.46     -0.59    0    0     2
## 195    Puako PU15    CTST  0.28   0.7      -2.46     -0.59    .    .     1
## 196    Puako PU22    CTST  1.99  2.28      -2.46     -0.59    .    .     1
## 197    Puako PU28    CTST  0.28  1.49      -2.46     -0.59    0    0     2
##     Buffer boulder hard_bottom soft_bottom coral unknown  wave effluent fishing
## 89       0   -0.36        -0.1       -0.17  0.44   -0.25 -0.74        0    0.69
## 90       0   -0.36        -0.1       -0.17  0.44   -0.25 -0.74        0    0.66
## 91       0    5.51        -0.1       -0.17 -3.29   -0.25 -0.74        0    0.95
## 92       0   -0.36        -0.1       -0.17  0.44   -0.25 -0.74        0     0.7
## ...    ...     ...         ...         ...   ...     ...   ...      ...     ...
## 194      0   -0.36        -0.1       -0.17  0.44   -0.25 -1.41     2.03   -0.36
## 195      0   -0.36        -0.1       -0.17  0.44   -0.25 -1.36    -0.09    0.79
## 196      0   -0.36        -0.1       -0.17  0.29   -0.06  -1.5     1.13    0.87
## 197      0   -0.36        -0.1       -0.17  0.29   -0.06  -1.5     1.13    0.88
##     mean_depth BAA3 BAA5 BAA7
## 89        0.99 0.97   69    .
## 90        1.02 0.97    .    .
## 91        1.77 0.97    .    .
## 92        1.27    0    .    .
## ...        ...  ... <NA> <NA>
## 194       0.53 0.97    .    .
## 195       0.81 0.97   68    .
## 196       0.61 0.97   68  119
## 197       0.74 0.97   68    .

####fit models model1 <- cpglm(CTX1B ~ TL + BAA3,data = CTST, link = “log”) model2 <- glm(CTX1B ~ TL + BAA3 + Fishing,data = CTST, link = “log”) model3 <- glm(CTX1B ~ TL + Fishing, data = CTST, link = “log”) model4 = glm(CTX1B ~ TL + Fishing + Effluent, data = CTST, link = “log”) model5 = glm(CTX1B ~ herbivore + BAA3, data = CTST, link = “log”) model6 = glm(CTX1B ~ TL + Effluent,data = CTST, link = “log”) model7 = glm(CTX1B~ TL + mean_depth, data = CTST, link = “log”) model8 = glm(CTX1B ~ coral + boulder + TL + BAA3,data = CTST, link = “log”) model9 = glm(CTX1B ~ TL, data = CTST, link = “log”) model10 = glm(CTX1B ~ TL + coral + boulder + herbivore, data = CTST, link = “log”) model11 = glm(CTX1B ~ TL + Wave, data = CTST, link = “log”) model12 = glm(CTX1B ~ TL + Age, data = CTST, link = “log”) model13 = glm(CTX1B ~ TL + coral + boulder, data = CTST, link = “log”) model14 = glm(CTX1B ~ TL + site_coral + herbivore, data = CTST, link = “log”) model15 = glm(CTX1B ~ BAA3, family=“binomial”, data = CTST, link = “log”) model16 = glm(CTX1B ~ herbivore + Fishing, data = CTST, link = “log”) model17 = glm(CTX1B ~ site_coral + Fishing, data = CTST, link = “log”) model18 = glm(CTX1B ~ herbivore + Fishing + mean_depth, data = CTST, link = “log”) model19 = glm(CTX1B ~ coral + boulder + hard_bottom + soft_bottom, data = CTST, link = “log”) model20 = glm(CTX1B ~ site_coral + Effluent, data = CTST, link = “log”) model21 = glm(CTX1B ~ site_coral,data = CTST, link = “log”) model22 = glm(CTX1B ~ herbivore,data = CTST, link = “log”) model23 = glm(CTX1B ~ Wave, data = CTST, link = “log”) model24 = glm(CTX1B ~ TL + BAA3 + Fishing + Effluent + herbivore + mean_depth + site_coral + Wave + Age + coral + boulder + hard_bottom + soft_bottom, data = CTST, link = “log”) ## AICTweedie

M1 <- cpglm(CXT1B ~ TL + BAA3,data = CTST, link = "log")
summary(M1)
## 
## Call:
## cpglm(formula = CXT1B ~ TL + BAA3, link = "log", data = CTST)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.7820  -1.2074  -0.7285   0.4822   1.7369  
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1.7912     0.1016  17.637  < 2e-16 ***
## TL           -0.1730     0.1028  -1.683 0.095386 .  
## BAA3         -0.4707     0.1269  -3.709 0.000333 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Estimated dispersion parameter: 1.0402
## Estimated index parameter: 1.99 
## 
## Residual deviance: 131.56  on 106  degrees of freedom
## AIC:  614.94 
## 
## Number of Fisher Scoring iterations:  7
M2 <- cpglm(CXT1B ~ TL + BAA3 + fishing,data = CTST, link = "log")
summary(M2)
## 
## Call:
## cpglm(formula = CXT1B ~ TL + BAA3 + fishing, link = "log", data = CTST)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.6048  -1.2717  -0.7127   0.4002   1.8134  
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1.7632     0.1041  16.932   <2e-16 ***
## TL           -0.1438     0.1055  -1.363   0.1757    
## BAA3         -0.2319     0.1482  -1.565   0.1206    
## fishing      -0.3078     0.1268  -2.427   0.0169 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Estimated dispersion parameter: 0.9958
## Estimated index parameter: 1.99 
## 
## Residual deviance: 125.29  on 105  degrees of freedom
## AIC:  610.78 
## 
## Number of Fisher Scoring iterations:  8
M3 <- cpglm(CXT1B ~ TL + fishing, data = CTST, link = "log")
summary(M3)
## 
## Call:
## cpglm(formula = CXT1B ~ TL + fishing, link = "log", data = CTST)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.6852  -1.2533  -0.7029   0.4046   1.9013  
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1.7740     0.1045  16.973  < 2e-16 ***
## TL           -0.1055     0.1057  -0.998 0.320640    
## fishing      -0.4116     0.1118  -3.681 0.000367 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Estimated dispersion parameter: 1.0129
## Estimated index parameter: 1.99 
## 
## Residual deviance: 127.7  on 106  degrees of freedom
## AIC:  611.18 
## 
## Number of Fisher Scoring iterations:  6
M4 <- cpglm(CXT1B ~ TL + fishing + effluent, data = CTST, link = "log")
summary(M4)
## 
## Call:
## cpglm(formula = CXT1B ~ TL + fishing + effluent, link = "log", 
##     data = CTST)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.9247  -1.1422  -0.6058   0.1905   1.7419  
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.68561    0.10089  16.707  < 2e-16 ***
## TL          -0.12651    0.10263  -1.233    0.220    
## fishing     -0.09803    0.13185  -0.744    0.459    
## effluent    -0.77394    0.16574  -4.669 8.97e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Estimated dispersion parameter: 0.87272
## Estimated index parameter: 1.99 
## 
## Residual deviance: 108.17  on 105  degrees of freedom
## AIC:  592.43 
## 
## Number of Fisher Scoring iterations:  6
M5 <- cpglm(CXT1B ~ herbivore + BAA3, data = CTST, link = "log")
summary(M5)
## 
## Call:
## cpglm(formula = CXT1B ~ herbivore + BAA3, link = "log", data = CTST)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.7494  -1.2344  -0.8416   0.5154   1.7941  
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.80293    0.10208  17.662  < 2e-16 ***
## herbivore   -0.01469    0.10414  -0.141  0.88810    
## BAA3        -0.43095    0.12925  -3.334  0.00118 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Estimated dispersion parameter: 1.0583
## Estimated index parameter: 1.99 
## 
## Residual deviance: 134.14  on 106  degrees of freedom
## AIC:  617.4 
## 
## Number of Fisher Scoring iterations:  9
M6 <- cpglm(CXT1B ~ TL + effluent,data = CTST, link = "log")
summary(M6)
## 
## Call:
## cpglm(formula = CXT1B ~ TL + effluent, link = "log", data = CTST)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.9063  -1.1203  -0.6064   0.1511   2.0167  
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1.6889     0.1001  16.864  < 2e-16 ***
## TL           -0.1271     0.1019  -1.248    0.215    
## effluent     -0.8396     0.1347  -6.234 9.43e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Estimated dispersion parameter: 0.87797
## Estimated index parameter: 1.99 
## 
## Residual deviance: 108.89  on 106  degrees of freedom
## AIC:  591.26 
## 
## Number of Fisher Scoring iterations:  6
M7 <- cpglm(CXT1B~ TL + mean_depth, data = CTST, link = "log")
summary(M7)
## 
## Call:
## cpglm(formula = CXT1B ~ TL + mean_depth, link = "log", data = CTST)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.5672  -1.4058  -0.9397   0.8817   1.6817  
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.85813    0.10240  18.145   <2e-16 ***
## TL          -0.08979    0.10385  -0.865    0.389    
## mean_depth  -0.02297    0.11018  -0.208    0.835    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Estimated dispersion parameter: 1.1438
## Estimated index parameter: 1.99 
## 
## Residual deviance: 146.4  on 106  degrees of freedom
## AIC:  628.53 
## 
## Number of Fisher Scoring iterations:  8
M8 <- cpglm(CXT1B ~ coral + boulder + TL + BAA3,data = CTST, link = "log")
summary(M8)
## 
## Call:
## cpglm(formula = CXT1B ~ coral + boulder + TL + BAA3, link = "log", 
##     data = CTST)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.8010  -1.2051  -0.7067   0.5182   2.0073  
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.77726    0.10345  17.179  < 2e-16 ***
## coral       -0.14404    0.13339  -1.080 0.282718    
## boulder      0.05146    0.13502   0.381 0.703859    
## TL          -0.14885    0.10525  -1.414 0.160275    
## BAA3        -0.52086    0.13069  -3.985 0.000125 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Estimated dispersion parameter: 1.0184
## Estimated index parameter: 1.99 
## 
## Residual deviance: 128.48  on 104  degrees of freedom
## AIC:  615.95 
## 
## Number of Fisher Scoring iterations:  7
M9 <- cpglm(CXT1B ~ TL, data = CTST, link = "log")
summary(M9)
## 
## Call:
## cpglm(formula = CXT1B ~ TL, link = "log", data = CTST)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.5391  -1.4174  -0.9295   0.8651   1.6780  
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.85832    0.10201  18.218   <2e-16 ***
## TL          -0.08861    0.10297  -0.861    0.391    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Estimated dispersion parameter: 1.1441
## Estimated index parameter: 1.99 
## 
## Residual deviance: 146.44  on 107  degrees of freedom
## AIC:  626.57 
## 
## Number of Fisher Scoring iterations:  6
M10 <- cpglm(CXT1B ~ TL + coral + boulder + herbivore, data = CTST, link = "log")
summary(M10)
## 
## Call:
## cpglm(formula = CXT1B ~ TL + coral + boulder + herbivore, link = "log", 
##     data = CTST)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.5538  -1.3962  -0.9193   0.8428   1.6219  
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.85361    0.10369  17.877   <2e-16 ***
## TL          -0.05584    0.10858  -0.514    0.608    
## coral       -0.11651    0.14409  -0.809    0.421    
## boulder     -0.01370    0.13552  -0.101    0.920    
## herbivore   -0.06611    0.11581  -0.571    0.569    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Estimated dispersion parameter: 1.1368
## Estimated index parameter: 1.99 
## 
## Residual deviance: 145.39  on 104  degrees of freedom
## AIC:  631.65 
## 
## Number of Fisher Scoring iterations:  7
M11 <- cpglm(CXT1B ~ TL + wave, data = CTST, link = "log")
summary(M11)
## 
## Call:
## cpglm(formula = CXT1B ~ TL + wave, link = "log", data = CTST)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.5808  -1.3918  -0.9173   0.8491   1.5581  
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.85495    0.10196  18.193   <2e-16 ***
## TL          -0.07450    0.10340  -0.721    0.473    
## wave        -0.09236    0.10975  -0.842    0.402    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Estimated dispersion parameter: 1.1389
## Estimated index parameter: 1.99 
## 
## Residual deviance: 145.69  on 106  degrees of freedom
## AIC:  627.91 
## 
## Number of Fisher Scoring iterations:  6
M12 <- cpglm(CXT1B ~ TL +  Age, data =CTST, link = "log")
summary(M12)
## 
## Call:
## cpglm(formula = CXT1B ~ TL + Age, link = "log", data = CTST)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.5439  -1.4100  -0.9400   0.8845   1.6559  
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.85810    0.10256  18.117   <2e-16 ***
## TL          -0.07387    0.12706  -0.581    0.562    
## Age         -0.02322    0.12705  -0.183    0.855    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Estimated dispersion parameter: 1.1438
## Estimated index parameter: 1.99 
## 
## Residual deviance: 146.39  on 106  degrees of freedom
## AIC:  628.53 
## 
## Number of Fisher Scoring iterations:  7
M13 <- cpglm(CXT1B ~ TL + coral + boulder, data = CTST, link = "log")
summary(M13)
## 
## Call:
## cpglm(formula = CXT1B ~ TL + coral + boulder, link = "log", data = CTST)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.5212  -1.3985  -0.9204   0.7841   1.7215  
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.85568    0.10377  17.883   <2e-16 ***
## TL          -0.07975    0.10534  -0.757    0.451    
## coral       -0.08203    0.13393  -0.612    0.542    
## boulder     -0.01471    0.13456  -0.109    0.913    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Estimated dispersion parameter: 1.14
## Estimated index parameter: 1.99 
## 
## Residual deviance: 145.85  on 105  degrees of freedom
## AIC:  630.06 
## 
## Number of Fisher Scoring iterations:  7
M14 <- cpglm(CXT1B ~ TL + site_coral + herbivore, data = CTST, link = "log")
summary(M14)
## 
## Call:
## cpglm(formula = CXT1B ~ TL + site_coral + herbivore, link = "log", 
##     data = CTST)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.6473  -1.3952  -0.8872   0.8846   1.5323  
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.83883    0.09887  18.599  < 2e-16 ***
## TL          -0.04401    0.10491  -0.419  0.67572    
## site_coral   0.33457    0.10330   3.239  0.00161 ** 
## herbivore   -0.05565    0.10427  -0.534  0.59468    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Estimated dispersion parameter: 1.1146
## Estimated index parameter: 1.99 
## 
## Residual deviance: 142.19  on 105  degrees of freedom
## AIC:  626.81 
## 
## Number of Fisher Scoring iterations:  14
M15 <- cpglm(CXT1B ~ BAA3, data = CTST, link = "log")
summary(M15)
## 
## Call:
## cpglm(formula = CXT1B ~ BAA3, link = "log", data = CTST)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.7612  -1.2311  -0.8583   0.5313   1.8162  
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1.8031     0.1017  17.736  < 2e-16 ***
## BAA3         -0.4309     0.1267  -3.401 0.000946 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Estimated dispersion parameter: 1.0585
## Estimated index parameter: 1.99 
## 
## Residual deviance: 134.17  on 107  degrees of freedom
## AIC:  615.43 
## 
## Number of Fisher Scoring iterations:  6
M16 <- cpglm(CXT1B ~ herbivore + fishing, data = CTST, link = "log")
summary(M16)
## 
## Call:
## cpglm(formula = CXT1B ~ herbivore + fishing, link = "log", data = CTST)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.6539  -1.2122  -0.7416   0.5139   1.8113  
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.77836    0.10408  17.087  < 2e-16 ***
## herbivore   -0.01507    0.10453  -0.144 0.885621    
## fishing     -0.40439    0.11116  -3.638 0.000427 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Estimated dispersion parameter: 1.0197
## Estimated index parameter: 1.99 
## 
## Residual deviance: 128.66  on 106  degrees of freedom
## AIC:  612.12 
## 
## Number of Fisher Scoring iterations:  7
M17 <- cpglm(CXT1B~ site_coral + fishing, data = CTST, link = "log")
summary(M17)
## 
## Call:
## cpglm(formula = CXT1B ~ site_coral + fishing, link = "log", data = CTST)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.7277  -1.3194  -0.7257   0.4428   1.8116  
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1.7639     0.1011  17.446  < 2e-16 ***
## site_coral    0.2597     0.1023   2.540 0.012534 *  
## fishing      -0.3920     0.1084  -3.616 0.000459 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Estimated dispersion parameter: 0.99721
## Estimated index parameter: 1.99 
## 
## Residual deviance: 125.49  on 106  degrees of freedom
## AIC:  608.98 
## 
## Number of Fisher Scoring iterations:  11
M18 <- cpglm(CXT1B ~ herbivore + fishing + mean_depth, data = CTST, link = "log")
summary(M18)
## 
## Call:
## cpglm(formula = CXT1B ~ herbivore + fishing + mean_depth, link = "log", 
##     data = CTST)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.6990  -1.1687  -0.7680   0.5591   1.7703  
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.75281    0.10183  17.212  < 2e-16 ***
## herbivore    0.07462    0.10762   0.693   0.4896    
## fishing     -0.51110    0.11493  -4.447 2.17e-05 ***
## mean_depth   0.28517    0.12078   2.361   0.0201 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Estimated dispersion parameter: 0.97957
## Estimated index parameter: 1.99 
## 
## Residual deviance: 123.01  on 105  degrees of freedom
## AIC:  608.47 
## 
## Number of Fisher Scoring iterations:  6
M19 <- cpglm(CXT1B ~ coral + boulder + hard_bottom + soft_bottom, data = CTST, link = "log")
summary(M19)
## 
## Call:
## cpglm(formula = CXT1B ~ coral + boulder + hard_bottom + soft_bottom, 
##     link = "log", data = CTST)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.4810  -1.4043  -0.9503   0.7658   1.6396  
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.84417    0.10239  18.011   <2e-16 ***
## coral       -0.08794    0.13220  -0.665   0.5074    
## boulder     -0.01450    0.13219  -0.110   0.9128    
## hard_bottom -0.18568    0.11081  -1.676   0.0968 .  
## soft_bottom  0.10571    0.10938   0.966   0.3361    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Estimated dispersion parameter: 1.1224
## Estimated index parameter: 1.99 
## 
## Residual deviance: 143.31  on 104  degrees of freedom
## AIC:  629.81 
## 
## Number of Fisher Scoring iterations:  6
M20 <- cpglm(CXT1B ~ site_coral + effluent, data = CTST, link = "log")
summary(M20)
## 
## Call:
## cpglm(formula = CXT1B ~ site_coral + effluent, link = "log", 
##     data = CTST)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.8877  -1.1429  -0.7262   0.1013   1.8354  
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.69555    0.09963  17.018  < 2e-16 ***
## site_coral  -0.03492    0.10835  -0.322    0.748    
## effluent    -0.83875    0.14360  -5.841 5.77e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Estimated dispersion parameter: 0.88868
## Estimated index parameter: 1.99 
## 
## Residual deviance: 110.37  on 106  degrees of freedom
## AIC:  592.93 
## 
## Number of Fisher Scoring iterations:  9
M21 <- cpglm(CXT1B ~ site_coral, data = CTST, link = "log")
summary(M21)
## 
## Call:
## cpglm(formula = CXT1B ~ site_coral, link = "log", data = CTST)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.5836  -1.4587  -0.8899   0.8488   1.5529  
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.84193    0.09838  18.723  < 2e-16 ***
## site_coral   0.32618    0.09911   3.291  0.00135 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Estimated dispersion parameter: 1.1194
## Estimated index parameter: 1.99 
## 
## Residual deviance: 142.87  on 107  degrees of freedom
## AIC:  623.42 
## 
## Number of Fisher Scoring iterations:  14
M22 <- cpglm(CXT1B ~ herbivore, data = CTST, link = "log")
summary(M22)
## 
## Call:
## cpglm(formula = CXT1B ~ herbivore, link = "log", data = CTST)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.4461  -1.4413  -0.9471   0.9536   1.5115  
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.86038    0.10091  18.436   <2e-16 ***
## herbivore   -0.03526    0.10139  -0.348    0.729    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Estimated dispersion parameter: 1.1473
## Estimated index parameter: 1.99 
## 
## Residual deviance: 146.89  on 107  degrees of freedom
## AIC:  626.97 
## 
## Number of Fisher Scoring iterations:  6
M23 <- cpglm(CXT1B ~ wave, data = CTST, link = "log")
summary(M23)
## 
## Call:
## cpglm(formula = CXT1B ~ wave, link = "log", data = CTST)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.5229  -1.4032  -0.9828   0.9037   1.4940  
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1.8569     0.1008  18.421   <2e-16 ***
## wave         -0.1030     0.1080  -0.954    0.342    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Estimated dispersion parameter: 1.142
## Estimated index parameter: 1.99 
## 
## Residual deviance: 146.13  on 107  degrees of freedom
## AIC:  626.3 
## 
## Number of Fisher Scoring iterations:  6
M24 <- cpglm(CXT1B ~ TL + BAA3 + fishing + effluent + herbivore + mean_depth + site_coral + wave + Age + coral + boulder + hard_bottom + soft_bottom, data = CTST, family = tweedie(var.power=1.5, link.power=0))
summary(M24)
## 
## Call:
## cpglm(formula = CXT1B ~ TL + BAA3 + fishing + effluent + herbivore + 
##     mean_depth + site_coral + wave + Age + coral + boulder + 
##     hard_bottom + soft_bottom, data = CTST, family = tweedie(var.power = 1.5, 
##     link.power = 0))
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.7462  -1.0200  -0.5239   0.4114   2.3758  
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.64145    0.10458  15.696  < 2e-16 ***
## TL          -0.18308    0.14426  -1.269  0.20753    
## BAA3        -0.31912    0.16997  -1.878  0.06351 .  
## fishing     -0.06092    0.17105  -0.356  0.72250    
## effluent    -0.68215    0.22835  -2.987  0.00358 ** 
## herbivore    0.23606    0.20124   1.173  0.24372    
## mean_depth   0.22649    0.16185   1.399  0.16495    
## site_coral   0.17705    0.18610   0.951  0.34382    
## wave        -0.37620    0.26463  -1.422  0.15841    
## Age          0.02811    0.14463   0.194  0.84631    
## coral        0.01377    0.15464   0.089  0.92922    
## boulder      0.01990    0.14576   0.137  0.89170    
## hard_bottom -0.05600    0.11904  -0.470  0.63915    
## soft_bottom -0.05458    0.13151  -0.415  0.67909    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Estimated dispersion parameter: 0.80094
## Estimated index parameter: 1.99 
## 
## Residual deviance: 98.373  on 95  degrees of freedom
## AIC:  600.72 
## 
## Number of Fisher Scoring iterations:  16
M25 <- cpglm(CXT1B ~ 1, data = CTST, link = "log")
summary(M25)
## 
## Call:
## cpglm(formula = CXT1B ~ 1, link = "log", data = CTST)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.4342  -1.4342  -0.9858   0.9027   1.5606  
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1.8612     0.1008   18.46   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Estimated dispersion parameter: 1.1485
## Estimated index parameter: 1.99 
## 
## Residual deviance: 147.07  on 108  degrees of freedom
## AIC:  625.12 
## 
## Number of Fisher Scoring iterations:  6