setwd("C:/Users/Nikol/Documents/Ciguatara Project/Data/CXT Data")
All = read.csv("CTX_All_NR.csv")
dim(All) #examine data
## [1] 197  26
head(All,7)# examine data
##    ï..Site  Tag Species   TL Age site_coral herbivore CTX3 EC50 CXT1B Buffer
## 1 Anaehoom AB02    CEAR   35  10      14.23   1827.46    0    0     0     40
## 2 Anaehoom AB05    CEAR   47  22      14.23   1827.46    0    0     0     40
## 3 Anaehoom AB06    CEAR 29.5   7      14.23   1827.46    0    0     0     40
## 4 Anaehoom AB07    CEAR 31.5   9      14.23   1827.46    0    0     0     40
## 5 Anaehoom AB11    CEAR 22.5  10      14.23   1827.46    0    0     0     40
## 6 Anaehoom AB12    CEAR   29   5      14.23   1827.46    0    0     0     40
## 7 Anaehoom AB22    CEAR 41.5  12      14.23   1827.46    0    0     0     40
##   boulder hard_bottom soft_bottom coral unknown    wave effluent fishing
## 1   0.000           0           0 1.000       0 2.62089          27.8167
## 2   0.128           0           0 0.872       0 2.64007          35.3690
## 3   0.000           0           0 1.000       0 2.62772          26.8266
## 4   0.000           0           0 1.000       0 2.62876          34.4041
## 5   0.000           0           0 1.000       0 2.61802          25.8674
## 6   0.369           0           0 0.631       0 2.61319          39.4247
## 7   0.000           0           0 1.000       0 2.61736     22.3 21.0566
##   mean_depth BAA3 BAA5 BAA7  X X.1 X.2
## 1    -5.9999   67   69  121 NA  NA  NA
## 2    -4.9986   67   69  121 NA  NA  NA
## 3    -6.6052   67   69  121 NA  NA  NA
## 4    -5.5554   67   69  121 NA  NA  NA
## 5    -5.9993   67   69  121 NA  NA  NA
## 6    -2.6409   67   69    . NA  NA  NA
## 7    -6.7602   67   69  121 NA  NA  NA

Load required packages

library(GlmSimulatoR)
## Warning: package 'GlmSimulatoR' was built under R version 4.0.5
library(ggplot2)
library(cplm, quietly = TRUE)
set.seed(1)
library(ggplot2)
library(ggpubr)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(AICcmodavg)
library(tweedie)
library(statmod)  # For the `glm.tweedie` function
library(Metrics)  # For AIC calculation
## Warning: package 'Metrics' was built under R version 4.0.5
library(pscl)
## Classes and Methods for R developed in the
## Political Science Computational Laboratory
## Department of Political Science
## Stanford University
## Simon Jackman
## hurdle and zeroinfl functions by Achim Zeileis
library(psych)
## 
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
## 
##     %+%, alpha
library(tidyr)
## 
## Attaching package: 'tidyr'
## The following objects are masked from 'package:Matrix':
## 
##     expand, pack, unpack

Create subset of data for each species

CTST = subset(All, Species =="CTST")
dim(CTST) #examine data
## [1] 109  26
headTail(CTST,2)# examine data
##      ï..Site  Tag Species   TL  Age site_coral herbivore CTX3 EC50 CXT1B Buffer
## 89  Anaehoom AB01    CTST   13    6      14.23   1827.46    0    0     0     20
## 90  Anaehoom AB03    CTST   13    4      14.23   1827.46    .    0     0     20
## ...     <NA> <NA>    <NA> <NA> <NA>        ...       ... <NA>  ...   ...    ...
## 194    Puako PU14    CTST   13    3       4.13   2827.84    .    0     0     20
## 195    Puako PU15    CTST   15    5       4.13   2827.84    .    0     0     20
## 196    Puako PU22    CTST   18    7       4.13   2827.84    .    0     0     20
## 197    Puako PU28    CTST   15    6       4.13   2827.84    .    0     0     20
##     boulder hard_bottom soft_bottom coral unknown wave effluent fishing
## 89        0           0           0     1       0 2.61             37.6
## 90        0           0           0     1       0 2.61            37.36
## ...     ...         ...         ...   ...     ...  ...     <NA>     ...
## 194       0           0           0     1       0 1.99 13035.25   28.52
## 195       0           0           0     1       0 2.04  5192.94   38.49
## 196       0           0           0  0.96    0.04 1.91  9700.96   39.16
## 197       0           0           0  0.96    0.04 1.91  9718.17   39.24
##     mean_depth BAA3 BAA5 BAA7    X  X.1  X.2
## 89     -4.1565   67   69    . <NA> <NA> <NA>
## 90     -4.0627   67    .    . <NA> <NA> <NA>
## ...       <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 194    -5.8475   67    .    . <NA> <NA> <NA>
## 195     -4.808   67   68    . <NA> <NA> <NA>
## 196    -5.5423   67   68  119 <NA> <NA> <NA>
## 197    -5.0679   67   68    . <NA> <NA> <NA>
CEAR = subset(All, Species =="CEAR")
dim(CEAR) #examine data
## [1] 88 26
headTail(CEAR,2)# examine data
##      ï..Site  Tag Species   TL     Age site_coral herbivore CTX3 EC50 CXT1B
## 1   Anaehoom AB02    CEAR   35      10      14.23   1827.46    0    0     0
## 2   Anaehoom AB05    CEAR   47      22      14.23   1827.46    0    0     0
## ...     <NA> <NA>    <NA> <NA>    <NA>        ...       ... <NA>  ...   ...
## 85     Puako PU37    CEAR   32  8.1148       4.13   2827.84    1    3  0.13
## 86     Puako PU38    CEAR   38       9       4.13   2827.84    1  5.5  0.07
## 87     Puako PU39    CEAR   34       8       4.13   2827.84    1    2   0.2
## 88     Puako PU40    CEAR 48.5 21.6393       4.13   2827.84    1  0.3  1.33
##     Buffer boulder hard_bottom soft_bottom coral unknown wave effluent fishing
## 1       40       0           0           0     1       0 2.62            27.82
## 2       40    0.13           0           0  0.87       0 2.64            35.37
## ...    ...     ...         ...         ...   ...     ...  ...     <NA>     ...
## 85      40       0           0        0.14  0.84    0.02 2.25  1302.29   27.05
## 86      40       0           0        0.14  0.84    0.02 2.25  1302.29   27.05
## 87      40       0           0        0.14  0.84    0.02 2.25  1302.29   27.05
## 88      40       0           0        0.14  0.84    0.02 2.25  1302.29   27.05
##     mean_depth BAA3 BAA5 BAA7    X  X.1  X.2
## 1      -5.9999   67   69  121 <NA> <NA> <NA>
## 2      -4.9986   67   69  121 <NA> <NA> <NA>
## ...       <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 85     -5.7854   61   67  101 <NA> <NA> <NA>
## 86     -5.7854   61   67  101 <NA> <NA> <NA>
## 87     -5.7854   61   67  101 <NA> <NA> <NA>
## 88           .   61   67  101 <NA> <NA> <NA>
CEAR$CXT1B = as.factor(CEAR$CXT1B)
CEAR$boulder = as.numeric(CEAR$boulder)
CEAR$hard_bottom = as.numeric(CEAR$hard_bottom)
CEAR$soft_bottom = as.numeric(CEAR$soft_bottom)
CEAR$coral = as.numeric(CEAR$coral)
CEAR$unknown = as.numeric(CEAR$unknown)
CEAR$wave = as.numeric(CEAR$wave)
CEAR$effluent = as.numeric(CEAR$effluent)
## Warning: NAs introduced by coercion
CEAR$fishing = as.numeric(CEAR$fishing)
CEAR$mean_depth = as.numeric(CEAR$mean_depth)
## Warning: NAs introduced by coercion
CEAR$BAA3 = as.numeric(CEAR$BAA3)
## Warning: NAs introduced by coercion
CEAR$BAA5 = as.character(CEAR$BAA5)
CEAR$BAA7 = as.character(CEAR$BAA7)
CEAR$TL = as.numeric(CEAR$TL)
CEAR$Age = as.numeric(CEAR$Age)
str(CEAR)
## 'data.frame':    88 obs. of  26 variables:
##  $ ï..Site    : chr  "Anaehoom" "Anaehoom" "Anaehoom" "Anaehoom" ...
##  $ Tag        : chr  "AB02" "AB05" "AB06" "AB07" ...
##  $ Species    : chr  "CEAR" "CEAR" "CEAR" "CEAR" ...
##  $ TL         : num  35 47 29.5 31.5 22.5 29 41.5 27.5 17 24 ...
##  $ Age        : num  10 22 7 9 10 ...
##  $ site_coral : num  14.2 14.2 14.2 14.2 14.2 ...
##  $ herbivore  : num  1827 1827 1827 1827 1827 ...
##  $ CTX3       : chr  "0" "0" "0" "0" ...
##  $ EC50       : num  0 0 0 0 0 0 0 3 0 0 ...
##  $ CXT1B      : Factor w/ 14 levels "0","0.03636",..: 1 1 1 1 1 1 1 7 1 1 ...
##  $ Buffer     : int  40 40 40 40 40 40 40 40 40 40 ...
##  $ boulder    : num  0 0.128 0 0 0 0.369 0 0 0 0 ...
##  $ hard_bottom: num  0 0 0 0 0 0 0 0 0 0 ...
##  $ soft_bottom: num  0 0 0 0 0 0 0 0 0 0 ...
##  $ coral      : num  1 0.872 1 1 1 0.631 1 1 1 1 ...
##  $ unknown    : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ wave       : num  2.62 2.64 2.63 2.63 2.62 ...
##  $ effluent   : num  NA NA NA NA NA ...
##  $ fishing    : num  27.8 35.4 26.8 34.4 25.9 ...
##  $ mean_depth : num  -6 -5 -6.61 -5.56 -6 ...
##  $ BAA3       : num  67 67 67 67 67 67 67 67 NA 67 ...
##  $ BAA5       : chr  "69" "69" "69" "69" ...
##  $ BAA7       : chr  "121" "121" "121" "121" ...
##  $ X          : logi  NA NA NA NA NA NA ...
##  $ X.1        : logi  NA NA NA NA NA NA ...
##  $ X.2        : logi  NA NA NA NA NA NA ...
# Standardize all numeric columns (excluding factors, character, etc.)
numeric_cols <- sapply(CEAR, is.numeric)
CEAR[numeric_cols] <- scale(CEAR[numeric_cols])
headTail(CEAR)
##      ï..Site  Tag Species    TL   Age site_coral herbivore CTX3  EC50   CXT1B
## 1   Anaehoom AB02    CEAR  0.33   0.3       0.35     -0.77    0 -0.38       0
## 2   Anaehoom AB05    CEAR  1.89  2.76       0.35     -0.77    0 -0.38       0
## 3   Anaehoom AB06    CEAR -0.39 -0.31       0.35     -0.77    0 -0.38       0
## 4   Anaehoom AB07    CEAR -0.12   0.1       0.35     -0.77    0 -0.38       0
## ...     <NA> <NA>    <NA>   ...   ...        ...       ... <NA>   ...    <NA>
## 85     Puako PU37    CEAR -0.06 -0.09      -1.62      -0.4    1  0.89 0.13333
## 86     Puako PU38    CEAR  0.72   0.1      -1.62      -0.4    1  1.95 0.07273
## 87     Puako PU39    CEAR   0.2 -0.11      -1.62      -0.4    1  0.47     0.2
## 88     Puako PU40    CEAR  2.09  2.68      -1.62      -0.4    1 -0.25 1.33333
##     Buffer boulder hard_bottom soft_bottom coral unknown  wave effluent fishing
## 1      NaN   -0.33       -0.17       -0.42  0.77   -0.56 -0.49     <NA>    0.07
## 2      NaN    0.32       -0.17       -0.42  0.46   -0.56 -0.47     <NA>    0.75
## 3      NaN   -0.33       -0.17       -0.42  0.77   -0.56 -0.48     <NA>   -0.01
## 4      NaN   -0.33       -0.17       -0.42  0.77   -0.56 -0.48     <NA>    0.66
## ...    ...     ...         ...         ...   ...     ...   ...      ...     ...
## 85     NaN   -0.33       -0.17         2.5  0.37   -0.51 -0.92    -0.82    0.01
## 86     NaN   -0.33       -0.17         2.5  0.37   -0.51 -0.92    -0.82    0.01
## 87     NaN   -0.33       -0.17         2.5  0.37   -0.51 -0.92    -0.82    0.01
## 88     NaN   -0.33       -0.17         2.5  0.37   -0.51 -0.92    -0.82    0.01
##     mean_depth  BAA3 BAA5 BAA7    X  X.1  X.2
## 1         0.48  1.21   69  121 <NA> <NA> <NA>
## 2         0.65  1.21   69  121 <NA> <NA> <NA>
## 3         0.38  1.21   69  121 <NA> <NA> <NA>
## 4         0.55  1.21   69  121 <NA> <NA> <NA>
## ...        ...   ... <NA> <NA> <NA> <NA> <NA>
## 85        0.51 -1.21   67  101 <NA> <NA> <NA>
## 86        0.51 -1.21   67  101 <NA> <NA> <NA>
## 87        0.51 -1.21   67  101 <NA> <NA> <NA>
## 88        <NA> -1.21   67  101 <NA> <NA> <NA>
CEAR$CXT1B = as.numeric(CEAR$CXT1B)
# Replace missing values (NA) with 0
CEAR[is.na(CEAR)] <- 0
headTail(CEAR)
##      ï..Site  Tag Species    TL   Age site_coral herbivore CTX3  EC50 CXT1B
## 1   Anaehoom AB02    CEAR  0.33   0.3       0.35     -0.77    0 -0.38     1
## 2   Anaehoom AB05    CEAR  1.89  2.76       0.35     -0.77    0 -0.38     1
## 3   Anaehoom AB06    CEAR -0.39 -0.31       0.35     -0.77    0 -0.38     1
## 4   Anaehoom AB07    CEAR -0.12   0.1       0.35     -0.77    0 -0.38     1
## ...     <NA> <NA>    <NA>   ...   ...        ...       ... <NA>   ...   ...
## 85     Puako PU37    CEAR -0.06 -0.09      -1.62      -0.4    1  0.89     7
## 86     Puako PU38    CEAR  0.72   0.1      -1.62      -0.4    1  1.95     5
## 87     Puako PU39    CEAR   0.2 -0.11      -1.62      -0.4    1  0.47     9
## 88     Puako PU40    CEAR  2.09  2.68      -1.62      -0.4    1 -0.25    13
##     Buffer boulder hard_bottom soft_bottom coral unknown  wave effluent fishing
## 1        0   -0.33       -0.17       -0.42  0.77   -0.56 -0.49        0    0.07
## 2        0    0.32       -0.17       -0.42  0.46   -0.56 -0.47        0    0.75
## 3        0   -0.33       -0.17       -0.42  0.77   -0.56 -0.48        0   -0.01
## 4        0   -0.33       -0.17       -0.42  0.77   -0.56 -0.48        0    0.66
## ...    ...     ...         ...         ...   ...     ...   ...      ...     ...
## 85       0   -0.33       -0.17         2.5  0.37   -0.51 -0.92    -0.82    0.01
## 86       0   -0.33       -0.17         2.5  0.37   -0.51 -0.92    -0.82    0.01
## 87       0   -0.33       -0.17         2.5  0.37   -0.51 -0.92    -0.82    0.01
## 88       0   -0.33       -0.17         2.5  0.37   -0.51 -0.92    -0.82    0.01
##     mean_depth  BAA3 BAA5 BAA7   X X.1 X.2
## 1         0.48  1.21   69  121   0   0   0
## 2         0.65  1.21   69  121   0   0   0
## 3         0.38  1.21   69  121   0   0   0
## 4         0.55  1.21   69  121   0   0   0
## ...        ...   ... <NA> <NA> ... ... ...
## 85        0.51 -1.21   67  101   0   0   0
## 86        0.51 -1.21   67  101   0   0   0
## 87        0.51 -1.21   67  101   0   0   0
## 88           0 -1.21   67  101   0   0   0

####fit models model1 <- cpglm(CTX1B ~ TL + BAA3,data = CEAR, link = “log”) model2 <- glm(CTX1B ~ TL + BAA3 + Fishing,data = CEAR, link = “log”) model3 <- glm(CTX1B ~ TL + Fishing, data = CEAR, link = “log”) model4 = glm(CTX1B ~ TL + Fishing + Effluent, data = CEAR, link = “log”) model5 = glm(CTX1B ~ herbivore + BAA3, data = CEAR, link = “log”) model6 = glm(CTX1B ~ TL + Effluent,data = CEAR, link = “log”) model7 = glm(CTX1B~ TL + mean_depth, data = CEAR, link = “log”) model8 = glm(CTX1B ~ coral + boulder + TL + BAA3,data = CEAR, link = “log”) model9 = glm(CTX1B ~ TL, data = CEAR, link = “log”) model10 = glm(CTX1B ~ TL + coral + boulder + herbivore, data = CEAR, link = “log”) model11 = glm(CTX1B ~ TL + Wave, data = CEAR, link = “log”) model12 = glm(CTX1B ~ TL + Age, data = CEAR, link = “log”) model13 = glm(CTX1B ~ TL + coral + boulder, data = CEAR, link = “log”) model14 = glm(CTX1B ~ TL + site_coral + herbivore, data = CEAR, link = “log”) model15 = glm(CTX1B ~ BAA3, family=“binomial”, data = CEAR, link = “log”) model16 = glm(CTX1B ~ herbivore + Fishing, data = CEAR, link = “log”) model17 = glm(CTX1B ~ site_coral + Fishing, data = CEAR, link = “log”) model18 = glm(CTX1B ~ herbivore + Fishing + mean_depth, data = CEAR, link = “log”) model19 = glm(CTX1B ~ coral + boulder + hard_bottom + soft_bottom, data = CEAR, link = “log”) model20 = glm(CTX1B ~ site_coral + Effluent, data = CEAR, link = “log”) model21 = glm(CTX1B ~ site_coral,data = CEAR, link = “log”) model22 = glm(CTX1B ~ herbivore,data = CEAR, link = “log”) model23 = glm(CTX1B ~ Wave, data = CEAR, link = “log”) model24 = glm(CTX1B ~ TL + BAA3 + Fishing + Effluent + herbivore + mean_depth + site_coral + Wave + Age + coral + boulder + hard_bottom + soft_bottom, data = CEAR, link = “log”) ## AICTweedie

M1 <- cpglm(CXT1B ~ TL + BAA3,data = CEAR, link = "log")
summary(M1)
## 
## Call:
## cpglm(formula = CXT1B ~ TL + BAA3, link = "log", data = CEAR)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.3888  -0.5950  -0.3216   0.1851   2.6928  
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.74103    0.09905   7.481 6.19e-11 ***
## TL           0.52693    0.10144   5.195 1.39e-06 ***
## BAA3        -0.26598    0.10520  -2.528   0.0133 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Estimated dispersion parameter: 0.5173
## Estimated index parameter: 1.99 
## 
## Residual deviance: 49.375  on 85  degrees of freedom
## AIC:  293.82 
## 
## Number of Fisher Scoring iterations:  7
M2 <- cpglm(CXT1B ~ TL + BAA3 + fishing,data = CEAR, link = "log")
summary(M2)
## 
## Call:
## cpglm(formula = CXT1B ~ TL + BAA3 + fishing, link = "log", data = CEAR)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.4687  -0.5974  -0.2611   0.2200   2.5889  
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.73878    0.09612   7.686 2.57e-11 ***
## TL           0.53126    0.09852   5.393 6.27e-07 ***
## BAA3        -0.22174    0.12889  -1.720   0.0891 .  
## fishing     -0.09174    0.13455  -0.682   0.4972    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Estimated dispersion parameter: 0.51349
## Estimated index parameter: 1.99 
## 
## Residual deviance: 48.984  on 84  degrees of freedom
## AIC:  295.06 
## 
## Number of Fisher Scoring iterations:  8
M3 <- cpglm(CXT1B ~ TL + fishing, data = CEAR, link = "log")
summary(M3)
## 
## Call:
## cpglm(formula = CXT1B ~ TL + fishing, link = "log", data = CEAR)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.5046  -0.6388  -0.3614   0.3119   2.1019  
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.75470    0.09369   8.056 4.37e-12 ***
## TL           0.57926    0.09446   6.132 2.63e-08 ***
## fishing     -0.21626    0.10386  -2.082   0.0403 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Estimated dispersion parameter: 0.54108
## Estimated index parameter: 1.99 
## 
## Residual deviance: 51.822  on 85  degrees of freedom
## AIC:  298.45 
## 
## Number of Fisher Scoring iterations:  7
M4 <- cpglm(CXT1B ~ TL + fishing + effluent, data = CEAR, link = "log")
summary(M4)
## 
## Call:
## cpglm(formula = CXT1B ~ TL + fishing + effluent, link = "log", 
##     data = CEAR)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.3916  -0.6633  -0.3387   0.2405   1.8158  
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.74185    0.08781   8.449 7.64e-13 ***
## TL           0.56723    0.08874   6.392 8.73e-09 ***
## fishing     -0.19859    0.09912  -2.004   0.0483 *  
## effluent    -0.18480    0.10438  -1.771   0.0803 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Estimated dispersion parameter: 0.51898
## Estimated index parameter: 1.99 
## 
## Residual deviance: 49.547  on 84  degrees of freedom
## AIC:  296.16 
## 
## Number of Fisher Scoring iterations:  7
M5 <- cpglm(CXT1B ~ herbivore + BAA3, data = CEAR, link = "log")
summary(M5)
## 
## Call:
## cpglm(formula = CXT1B ~ herbivore + BAA3, link = "log", data = CEAR)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.3317  -0.8240  -0.5304  -0.2520   2.7262  
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   0.8898     0.1312   6.782 1.48e-09 ***
## herbivore     0.1173     0.1336   0.878  0.38226    
## BAA3         -0.4425     0.1384  -3.197  0.00195 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Estimated dispersion parameter: 0.76774
## Estimated index parameter: 1.99 
## 
## Residual deviance: 75.857  on 85  degrees of freedom
## AIC:  335.49 
## 
## Number of Fisher Scoring iterations:  6
M6 <- cpglm(CXT1B ~ TL + effluent,data = CEAR, link = "log")
summary(M6)
## 
## Call:
## cpglm(formula = CXT1B ~ TL + effluent, link = "log", data = CEAR)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -1.46684  -0.68490  -0.30835   0.09367   2.57106  
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.75862    0.09989   7.594 3.68e-11 ***
## TL           0.58843    0.10066   5.846 9.09e-08 ***
## effluent    -0.19277    0.11664  -1.653    0.102    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Estimated dispersion parameter: 0.54784
## Estimated index parameter: 1.99 
## 
## Residual deviance: 52.52  on 85  degrees of freedom
## AIC:  299.73 
## 
## Number of Fisher Scoring iterations:  6
M7 <- cpglm(CXT1B~ TL + mean_depth, data = CEAR, link = "log")
summary(M7)
## 
## Call:
## cpglm(formula = CXT1B ~ TL + mean_depth, link = "log", data = CEAR)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.4119  -0.6501  -0.4101   0.2317   2.1697  
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.76860    0.09983   7.699 2.27e-11 ***
## TL           0.58707    0.10099   5.813 1.05e-07 ***
## mean_depth  -0.08505    0.11188  -0.760    0.449    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Estimated dispersion parameter: 0.56485
## Estimated index parameter: 1.99 
## 
## Residual deviance: 54.282  on 85  degrees of freedom
## AIC:  302.9 
## 
## Number of Fisher Scoring iterations:  7
M8 <- cpglm(CXT1B ~ coral + boulder + TL + BAA3,data = CEAR, link = "log")
summary(M8)
## 
## Call:
## cpglm(formula = CXT1B ~ coral + boulder + TL + BAA3, link = "log", 
##     data = CEAR)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.4004  -0.6085  -0.3249   0.1786   2.6138  
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.7365162  0.0973429   7.566 4.72e-11 ***
## coral       -0.0005027  0.1120604  -0.004   0.9964    
## boulder     -0.1101433  0.1125048  -0.979   0.3304    
## TL           0.5184063  0.1004552   5.161 1.65e-06 ***
## BAA3        -0.2642830  0.1043303  -2.533   0.0132 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Estimated dispersion parameter: 0.50955
## Estimated index parameter: 1.99 
## 
## Residual deviance: 48.58  on 83  degrees of freedom
## AIC:  296.28 
## 
## Number of Fisher Scoring iterations:  7
M9 <- cpglm(CXT1B ~ TL, data = CEAR, link = "log")
summary(M9)
## 
## Call:
## cpglm(formula = CXT1B ~ TL, link = "log", data = CEAR)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.4592  -0.6327  -0.4146   0.1715   2.2794  
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   0.7721     0.1020   7.570 3.89e-11 ***
## TL            0.5977     0.1024   5.836 9.24e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Estimated dispersion parameter: 0.57093
## Estimated index parameter: 1.99 
## 
## Residual deviance: 54.914  on 86  degrees of freedom
## AIC:  302.01 
## 
## Number of Fisher Scoring iterations:  6
M10 <- cpglm(CXT1B ~ TL + coral + boulder + herbivore, data = CEAR, link = "log")
summary(M10)
## 
## Call:
## cpglm(formula = CXT1B ~ TL + coral + boulder + herbivore, link = "log", 
##     data = CEAR)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.4227  -0.6320  -0.4044   0.1523   2.0728  
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.76348    0.09811   7.782 1.76e-11 ***
## TL           0.58977    0.09952   5.926 6.81e-08 ***
## coral       -0.09598    0.12659  -0.758    0.450    
## boulder     -0.13566    0.11439  -1.186    0.239    
## herbivore   -0.06575    0.11184  -0.588    0.558    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Estimated dispersion parameter: 0.55618
## Estimated index parameter: 1.99 
## 
## Residual deviance: 53.383  on 83  degrees of freedom
## AIC:  305.29 
## 
## Number of Fisher Scoring iterations:  8
M11 <- cpglm(CXT1B ~ TL + wave, data = CEAR, link = "log")
summary(M11)
## 
## Call:
## cpglm(formula = CXT1B ~ TL + wave, link = "log", data = CEAR)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.4685  -0.6502  -0.3959   0.1233   2.3871  
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.76970    0.10193   7.551 4.49e-11 ***
## TL           0.58631    0.10390   5.643 2.15e-07 ***
## wave        -0.08433    0.11363  -0.742     0.46    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Estimated dispersion parameter: 0.56678
## Estimated index parameter: 1.99 
## 
## Residual deviance: 54.483  on 85  degrees of freedom
## AIC:  303.25 
## 
## Number of Fisher Scoring iterations:  6
M12 <- cpglm(CXT1B ~ TL +  Age, data =CEAR, link = "log")
summary(M12)
## 
## Call:
## cpglm(formula = CXT1B ~ TL + Age, link = "log", data = CEAR)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.5451  -0.6167  -0.4297   0.1204   2.2480  
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   0.7689     0.1015   7.575 4.02e-11 ***
## TL            0.4939     0.1611   3.066  0.00291 ** 
## Age           0.1257     0.1611   0.780  0.43730    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Estimated dispersion parameter: 0.56537
## Estimated index parameter: 1.99 
## 
## Residual deviance: 54.337  on 85  degrees of freedom
## AIC:  302.99 
## 
## Number of Fisher Scoring iterations:  7
M13 <- cpglm(CXT1B ~ TL + coral + boulder, data =CEAR, link = "log")
summary(M13)
## 
## Call:
## cpglm(formula = CXT1B ~ TL + coral + boulder, link = "log", data = CEAR)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.4500  -0.6016  -0.4264   0.1557   2.1269  
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.76533    0.09926   7.711 2.30e-11 ***
## TL           0.58646    0.10047   5.837 9.68e-08 ***
## coral       -0.07240    0.11332  -0.639    0.525    
## boulder     -0.13058    0.11435  -1.142    0.257    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Estimated dispersion parameter: 0.55928
## Estimated index parameter: 1.99 
## 
## Residual deviance: 53.705  on 84  degrees of freedom
## AIC:  303.87 
## 
## Number of Fisher Scoring iterations:  6
M14 <- cpglm(CXT1B ~ TL + site_coral + herbivore, data =CEAR, link = "log")
summary(M14)
## 
## Call:
## cpglm(formula = CXT1B ~ TL + site_coral + herbivore, link = "log", 
##     data = CEAR)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.4786  -0.6204  -0.3959   0.1511   2.2699  
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.771395   0.102174   7.550 4.79e-11 ***
## TL           0.598974   0.104138   5.752 1.39e-07 ***
## site_coral   0.001567   0.106576   0.015    0.988    
## herbivore   -0.039758   0.105436  -0.377    0.707    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Estimated dispersion parameter: 0.56969
## Estimated index parameter: 1.99 
## 
## Residual deviance: 54.785  on 84  degrees of freedom
## AIC:  305.78 
## 
## Number of Fisher Scoring iterations:  7
M15 <- cpglm(CXT1B ~ BAA3, data =CEAR, link = "log")
summary(M15)
## 
## Call:
## cpglm(formula = CXT1B ~ BAA3, link = "log", data = CEAR)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.3660  -0.7828  -0.5762  -0.3627   2.6474  
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   0.8967     0.1361   6.589 3.39e-09 ***
## BAA3         -0.4217     0.1418  -2.974  0.00381 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Estimated dispersion parameter: 0.77897
## Estimated index parameter: 1.99 
## 
## Residual deviance: 77.08  on 86  degrees of freedom
## AIC:  335.07 
## 
## Number of Fisher Scoring iterations:  6
M16 <- cpglm(CXT1B ~ herbivore + fishing, data =CEAR, link = "log")
summary(M16)
## 
## Call:
## cpglm(formula = CXT1B ~ herbivore + fishing, link = "log", data = CEAR)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.2222  -0.8302  -0.6870  -0.5678   2.3545  
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.952845   0.136755   6.968 6.43e-10 ***
## herbivore    0.003166   0.137552   0.023   0.9817    
## fishing     -0.278265   0.151032  -1.842   0.0689 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Estimated dispersion parameter: 0.86962
## Estimated index parameter: 1.99 
## 
## Residual deviance: 87.057  on 85  degrees of freedom
## AIC:  349.19 
## 
## Number of Fisher Scoring iterations:  7
M17 <- cpglm(CXT1B~ site_coral + fishing, data =CEAR, link = "log")
summary(M17)
## 
## Call:
## cpglm(formula = CXT1B ~ site_coral + fishing, link = "log", data = CEAR)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.2018  -0.8085  -0.7382  -0.4011   2.7157  
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   0.9433     0.1403   6.723 1.93e-09 ***
## site_coral   -0.1411     0.1538  -0.917    0.362    
## fishing      -0.3235     0.1690  -1.914    0.059 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Estimated dispersion parameter: 0.85423
## Estimated index parameter: 1.99 
## 
## Residual deviance: 85.35  on 85  degrees of freedom
## AIC:  347.21 
## 
## Number of Fisher Scoring iterations:  7
M18 <- cpglm(CXT1B ~ herbivore + fishing + mean_depth, data =CEAR, link = "log")
summary(M18)
## 
## Call:
## cpglm(formula = CXT1B ~ herbivore + fishing + mean_depth, link = "log", 
##     data = CEAR)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.2145  -0.8548  -0.6485  -0.5480   2.5728  
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.95183    0.13825   6.885 9.77e-10 ***
## herbivore    0.01915    0.15535   0.123    0.902    
## fishing     -0.34732    0.27172  -1.278    0.205    
## mean_depth   0.08192    0.28363   0.289    0.773    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Estimated dispersion parameter: 0.868
## Estimated index parameter: 1.99 
## 
## Residual deviance: 86.877  on 84  degrees of freedom
## AIC:  350.98 
## 
## Number of Fisher Scoring iterations:  7
M19 <- cpglm(CXT1B ~ coral + boulder + hard_bottom + soft_bottom, data =CEAR, link = "log")
summary(M19)
## 
## Call:
## cpglm(formula = CXT1B ~ coral + boulder + hard_bottom + soft_bottom, 
##     link = "log", data = CEAR)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -1.38465  -0.78785  -0.65546  -0.03788   2.30184  
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   0.9033     0.1386   6.519 5.19e-09 ***
## coral        -0.1535     0.1603  -0.958   0.3411    
## boulder      -0.2111     0.1595  -1.324   0.1893    
## hard_bottom  -0.1197     0.1542  -0.776   0.4400    
## soft_bottom   0.3372     0.1550   2.175   0.0324 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Estimated dispersion parameter: 0.78975
## Estimated index parameter: 1.99 
## 
## Residual deviance: 78.257  on 83  degrees of freedom
## AIC:  342.58 
## 
## Number of Fisher Scoring iterations:  6
M20 <- cpglm(CXT1B ~ site_coral + effluent, data =CEAR, link = "log")
summary(M20)
## 
## Call:
## cpglm(formula = CXT1B ~ site_coral + effluent, link = "log", 
##     data = CEAR)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.0186  -0.8344  -0.7576  -0.5748   2.6415  
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.965472   0.145186   6.650 2.68e-09 ***
## site_coral  -0.001541   0.148214  -0.010    0.992    
## effluent    -0.216853   0.171439  -1.265    0.209    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Estimated dispersion parameter: 0.88975
## Estimated index parameter: 1.99 
## 
## Residual deviance: 89.297  on 85  degrees of freedom
## AIC:  351.74 
## 
## Number of Fisher Scoring iterations:  15
M21 <- cpglm(CXT1B ~ site_coral, data =CEAR, link = "log")
summary(M21)
## 
## Call:
## cpglm(formula = CXT1B ~ site_coral, link = "log", data = CEAR)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.9039  -0.8338  -0.8308  -0.8122   2.3790  
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.98104    0.14252   6.883 8.99e-10 ***
## site_coral  -0.04791    0.14331  -0.334    0.739    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Estimated dispersion parameter: 0.91449
## Estimated index parameter: 1.99 
## 
## Residual deviance: 92.063  on 86  degrees of freedom
## AIC:  352.8 
## 
## Number of Fisher Scoring iterations:  6
M22 <- cpglm(CXT1B ~ herbivore, data =CEAR, link = "log")
summary(M22)
## 
## Call:
## cpglm(formula = CXT1B ~ herbivore, link = "log", data = CEAR)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.8568  -0.8467  -0.8455  -0.8437   2.2922  
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.98223    0.14117   6.958 6.42e-10 ***
## herbivore    0.00624    0.14197   0.044    0.965    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Estimated dispersion parameter: 0.91638
## Estimated index parameter: 1.99 
## 
## Residual deviance: 92.275  on 86  degrees of freedom
## AIC:  353.03 
## 
## Number of Fisher Scoring iterations:  6
M23 <- cpglm(CXT1B ~ wave, data =CEAR, link = "log")
summary(M23)
## 
## Call:
## cpglm(formula = CXT1B ~ wave, link = "log", data = CEAR)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.0204  -0.9056  -0.7296  -0.6277   2.5585  
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   0.9716     0.1433   6.782 1.42e-09 ***
## wave         -0.1845     0.1573  -1.173    0.244    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Estimated dispersion parameter: 0.89955
## Estimated index parameter: 1.99 
## 
## Residual deviance: 90.392  on 86  degrees of freedom
## AIC:  350.96 
## 
## Number of Fisher Scoring iterations:  7
M24 <- cpglm(CXT1B ~ TL + BAA3 + fishing + effluent + herbivore + mean_depth + site_coral + wave + Age + coral + boulder + hard_bottom + soft_bottom, data = CEAR, family = tweedie(var.power=1.5, link.power=0))
summary(M24)
## 
## Call:
## cpglm(formula = CXT1B ~ TL + BAA3 + fishing + effluent + herbivore + 
##     mean_depth + site_coral + wave + Age + coral + boulder + 
##     hard_bottom + soft_bottom, data = CEAR, family = tweedie(var.power = 1.5, 
##     link.power = 0))
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.4215  -0.5737  -0.1625   0.2053   2.0784  
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.684505   0.083933   8.155 6.58e-12 ***
## TL           0.336349   0.153564   2.190  0.03165 *  
## BAA3        -0.201460   0.158382  -1.272  0.20736    
## fishing      0.146715   0.232476   0.631  0.52992    
## effluent    -0.007457   0.144840  -0.051  0.95908    
## herbivore    0.307033   0.156112   1.967  0.05296 .  
## mean_depth  -0.214801   0.227275  -0.945  0.34768    
## site_coral   0.784450   0.254172   3.086  0.00285 ** 
## wave        -0.999705   0.301605  -3.315  0.00142 ** 
## Age          0.046385   0.158441   0.293  0.77053    
## coral       -0.114081   0.122871  -0.928  0.35619    
## boulder     -0.099721   0.129649  -0.769  0.44424    
## hard_bottom -0.003896   0.101434  -0.038  0.96946    
## soft_bottom  0.397161   0.173601   2.288  0.02501 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Estimated dispersion parameter: 0.4181
## Estimated index parameter: 1.99 
## 
## Residual deviance: 39.327  on 74  degrees of freedom
## AIC:  294.27 
## 
## Number of Fisher Scoring iterations:  11
M25 <- cpglm(CXT1B ~ 1, data =CEAR, link = "log")
summary(M25)
## 
## Call:
## cpglm(formula = CXT1B ~ 1, link = "log", data = CEAR)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.8473  -0.8473  -0.8473  -0.8473   2.2907  
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   0.9822     0.1405   6.992 5.25e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Estimated dispersion parameter: 0.91641
## Estimated index parameter: 1.99 
## 
## Residual deviance: 92.278  on 87  degrees of freedom
## AIC:  351.04 
## 
## Number of Fisher Scoring iterations:  5