Repository logo
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of UH System Repository
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Brinck, Kevin"

Now showing 1 - 12 of 12
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    2011 Kiwikiu (Maui Parrotbill) and Maui `alauahio abundance estimates and the effect of sampling effort on power to detect a trend.
    (2016-01-25) Brinck, Kevin; Camp, Richard; Gorressen, P. Marcos; Leonard, David; Mounce, Hanna; Iknayan, Kelly; Paxton, Eben
    The Kiwikiu (Pseudonestor xanthophrys), also called the Maui Parrotbill, is an endangered, forest bird found only in high elevation, wet forest of the eastern portion of Maui Island. Recent surveys, conducted at five year intervals, have revealed wide variation in abundance estimates (Camp et al. 2009). Effective management and conservation requires accurate estimates of abundance, which is difficult for rare species such as the Kiwikiu because low density leads to few observations, resulting in low sample size and high uncertainty in abundance estimates. In addition to being rare, they occur in remote, difficult to access terrain, which makes them difficult to detect and further reduces the accuracy of counts. The Maui `Alauahio (Paroreomyza montana), sometimes called the Maui Creeper, historically occupied the entire island of Maui (Gorresen et al. 2009). It has since been extirpated from much of its original habitat and now occurs in forested areas of East Maui where its habitat overlaps with that of the Kiwikiu. Though they share the same habitat, the `Alauahio is much more abundant—by more than two orders of magnitude—and occurs over a wider range than the Kiwikiu. Both species appear to have no statistically significant population trend from 1980–2001, but abundance estimates vary widely from survey to survey and have wide uncertainties (Camp et al. 2009). Ideally survey design should result in estimates precise enough to be able to detect significant declines in abundance that may trigger management intervention. We wished to improve the accuracy of Kiwikiu abundance estimates and the ability to detect significant trends in abundance. To that end, in 2011, repeated point count surveys were conducted across the Kiwikiu range, excluding Haleakalā National Park (Figure 1). The increased sampling effort increases sample size and improves the precision of estimates, and repeat samples also allowed us to partition within-year and between-year variation in surveys, increasing the statistical power to detect trends.
  • Loading...
    Thumbnail Image
    Item
    A five-year study of Hawaiian hoary bat (Lasiurus cinereus semotus) occupancy on the island of Hawai`i
    (2016-01-25) Gorressen, P. Marcos; Bonaccorso, Frank; Pinzari, Corinna; Todd, Christopher; Montoya-Aiona, Kristina; Brinck, Kevin
    Using acoustic recordings of the vocalizations of the endangered Hawaiian hoary bat (Lasiurus cinereus semotus) collected over a five-year period (2007–2011) from 25 survey areas across the island of Hawai`i, we modeled the relationship between habitat attributes and bat occurrence. Our data support the conclusion that hoary bats concentrate in the coastal lowlands of Hawai`i during the breeding season, May through October, and migrate to interior highlands during the winter non-breeding season. Highest occupancy peaked on the Julian date 15 September across the five-year average and during the season of fledging by the young of the year. Although the Hawaiian hoary bat is a habitat generalist species and occurs from sea level to the highest volcanic peaks on Hawai`i, there was a significant association between occupancy and the prevalence of mature forest cover. Trends in occupancy were stable to slightly increasing during the breeding season over the five years of our surveys.
  • Loading...
    Thumbnail Image
    Item
    A landscape-based assessment of climate change vulnerability for all native plants.
    (2016-01-25) Fortini, Lucas; Price, Jonathan; Jacobi, James; Vorsino, Adam; Burgett, Jeff; Brinck, Kevin; Amidon, Fred; Miller, Steve; Gon III, Sam; Koob, Gregory; Paxton, Eben
    In Hawaiʽi and elsewhere, research efforts have focused on two main approaches to determine the potential impacts of climate change on individual species: estimating species vulnerabilities and projecting responses of species to expected changes. We integrated these approaches by defining vulnerability as the inability of species to exhibit any of the responses necessary for persistence under climate change (i.e., tolerate projected changes, endure in microrefugia, or migrate to new climate-compatible areas, but excluding evolutionary adaptation). To operationalize this response-based definition of species vulnerability within a landscape-based analysis, we used current and future climate envelopes for each species to define zones across the landscape: the toleration zone; the microrefugia zone; and the migration zone. Using these response zones we calculated a diverse set of factors related to habitat area, quality, and distribution for each species, including the amount of habitat protection and fragmentation and areas projected to be lost to sea-level rise. We then calculated the probabilities of each species exhibiting these responses using a Bayesian network model and determined the overall climate change vulnerability of each species by using a vulnerability index. As a first iteration of a response-based species vulnerability assessment (VA), our landscape-based analysis effectively integrates species-distribution models into a Bayesian network-based VA that can be updated with improved models and data for more refined analyses in the future. Our results show that the species most vulnerable to climate change also tend to be species of conservation concern due to non-climatic threats (e.g., competition and predation from invasive species, land-use change). Also, many of Hawaiʽi’s taxa that are most vulnerable to climate change share characteristics with species that in the past were found to be at risk of extinction due to non-climatic threats (e.g., archipelago endemism, single-island endemism). Of particular concern are the numerous species that have no compatible-climate areas remaining by the year 2100. Species primarily associated with dry forests have higher vulnerability scores than species from any other habitat type. When examined at taxonomic levels above species, low vulnerabilities are concentrated in families and genera of generalists (e.g., ferns or sedges) and typically associated with mid-elevation wet habitats. Our results replicate findings from other regions that link higher species vulnerability with decreasing range size. This species VA is possibly the largest in scope ever conducted in the United States with over 1000 species considered, 319 of which are listed as endangered or threatened under the U.S. Endangered Species Act, filling a critical knowledge gap for resource managers in the region. The information in this assessment can help prioritize species for special conservation actions, guide the management of conservation areas, inform the selection of research and monitoring priorities, and support adaptive management planning and implementation.
  • Loading...
    Thumbnail Image
    Item
    Behavior of the Hawaiian hoary bat (Lasiurus cinereus semotus) at wind turbines and its distribution across the North Ko`olau mountains, O'ahu
    (2015-05) Gorressen, P. Marcos; Cryan, Paul; Huso, Manuela; Hein, Cris; Schirmacher, Michael; Johnson, Jessica; Montoya-Aiona, Kristina; Brinck, Kevin; Bonaccorso, Frank
    We studied the landscape distribution of endemic Hawaiian hoary bats (Lasiurus cinereus semotus) on the north Ko‘olau Mountains of O‘ahu, Hawai‘i, from May 2013 to May 2014, while simultaneously studying their behavior at wind turbines within the broader landscape. This research aimed to assess the risk that wind turbines pose to bats on the island and integrated a variety of methods, including acoustic monitoring, thermal videography, and fatality searches.Our findings indicate that hoary bats were acoustically cryptic and occurred sparsely in the region. Overall site occupancy rate was 55% during the 1-year period of acoustic monitoring at 23 sites, and there was only an 8% chance of acoustically detecting a bat on a given night if it was present. We detected bats less frequently in windward northern parts of the study area and at windy, lower-elevation sites with rough terrain. Bats were detected more frequently in leeward southern parts of the study area and at wind-sheltered, higher-elevation sites with flat ridgetops. Acoustic detections were consistently low from October through February and increased at most sites to peak in April through August. However, meteorological conditions were not found to be associated with the acoustic prevalence of bats on a night-to-night basis. We observed more than three thousand events involving bats during six months of nightly video surveillance at four wind turbines. Video monitoring revealed several links to weather at the local scale, despite acoustic detections not clearly relating to weather in our broader landscape analysis. Video demonstrated bats occurring near turbines more often on nights with little rain, warmer temperatures, moderate wind speeds, low humidity, and the low but rising barometric pressures indicative of fair weather and improved foraging conditions. Video monitoring also demonstrated that the presence of bats near turbines strongly correlates with insect presence. We detected bats on video rather infrequently, averaging only one to two passes per hour. Most detections were brief (median = 4.0 sec) and involved single bats (97%), with the amount of time during which bats were observed totaling to only 0.10% of the video analyzed (about 3.8 hours of 3,847 total hours). Bats frequently foraged in the airspace near turbines. These results differ from a recent similar study on the mainland (continental North America) and may indicate that Hawaiian hoary bats spend less time closely approaching wind turbines and show less interest in them than their more-migratory mainland conspecifics. We speculate that the Hawaiian hoary bats we observed were locally resident and frequenting high-quality habitat near familiar structures. In contrast, hoary bats observed at wind facilities on the mainland appear to approach and investigate unfamiliar landscape structures that they mistake for trees as they migrate long distances. Consequently, Hawaiian hoary bats may be less susceptible to fatality at wind turbines on a per-encounter basis than hoary bats in North America. Only one bat carcass was found at the four turbines searched daily for six months. The relatively high probability of finding carcasses provided strong assurance that few carcasses were likely missed—there was less than a 10% chance that total fatality at the four turbines monitored for half a year exceeded three bats.
  • Loading...
    Thumbnail Image
    Item
    Changes in Mauna Kea dry forest structure 2000-2014
    (2016-01-24) Brinck, Kevin; Banko, Paul
    Changes in the structure of the subalpine vegetation of Palila Critical Habitat on the southwestern slope of Mauna Kea Volcano, Hawai‘i, were analyzed using 12 metrics of change in māmane (Sophora chrysophylla) and naio (Myoporum sandwicense) trees surveyed on plots in 2000 and 2014. These two dominant species were analyzed separately, and changes in their structure indicated changes in the forest’s health. There was a significant increase in māmane minimum crown height (indicating a higher ungulate “browse line”), canopy area, canopy volume, percentage of trees with ungulate damage, and percentage of dead trees. No significant changes were observed in māmane maximum crown height, proportion of plots with trees, sapling density, proportion of plots with saplings, or the height distribution of trees. The only significant positive change was for māmane tree density. Significantly negative changes were observed for naio minimum crown height, tree height, canopy area, canopy volume, and percentage of dead trees. No significant changes were observed in naio tree density, proportion of plots with trees, proportion of plots with saplings, or percentage of trees with ungulate damage. Significantly positive changes were observed in naio sapling density and the height distribution of trees. There was also a significant increase in the proportion of māmane vs. naio trees in the survey area. The survey methods did not allow us to distinguish among potential factors driving these changes for metrics other than the percentage of trees with ungulate damage. Continued ungulate browsing and prolonged drought are likely the factors contributing most to the observed changes in vegetation, but tree disease or insect infestation of māmane, or naio, and competition from alien grasses and other weeds could also be causing or exacerbating the impacts to the forest. Although māmane tree density has increased since 2000, this study also demonstrates that efforts by managers to remove sheep (Ovis spp.) from Palila Critical Habitat have not overcome the ability of sheep to continue to damage māmane trees and impede restoration of the vegetation.
  • Loading...
    Thumbnail Image
    Item
    Developing accurate survey methods for estimating population sizes and trends of the critically endangered Nihoa millerbird and Nihoa finch.
    (2016-01-25) Gorressen, P. Marcos; Camp, Richard; Brinck, Kevin; Farmer, Chris
    This report describes the results of a comparative study of bird survey methods undertaken for the purpose of improving assessments of the conservation status for the two endemic passerines on the Island of Nihoa—Nihoa Millerbird (Sylviidae: Acrocephalus familiaris kingi) and Nihoa Finch (Fringilidae: Telespiza ultima; also referred herein as millerbird and finch)—both listed as endangered under the Federal Endangered Species Act (ESA) and Hawai`i Revised Statutes 195D. The current survey protocol, implemented since 1967, has produced a highly variable range of counts for both the millerbird and finch, making difficult assessments of population size and trend. This report details the analyses of bird survey data collected in 2010 and 2011 in which three survey methods were compared―strip-transect, line-transect, and point-transect sampling―and provides recommendations for improved survey methods and protocols. Funding for this research was provided through a Science Support Partnership grant sponsored jointly by the U.S. Geological Survey (USGS) and the U.S. Fish and Wildlife Service (USFWS). Point-transect surveys indicated that millerbirds were more abundant than shown by the strip-transect method, and were estimated at 802 birds in 2010 (95%CI = 652 – 964) and 704 birds in 2011 (95%CI = 579 – 837). Point-transect surveys yielded population estimates with improved precision which will permit trends to be detected in shorter time periods and with greater statistical power than is available from strip-transect survey methods. Mean finch population estimates and associated uncertainty were not markedly different among the three survey methods, but the performance of models used to estimate density and population size are expected to improve as the data from additional surveys are incorporated. Using the point-transect survey, the mean finch population size was estimated at 2,917 birds in 2010 (95%CI = 2,037 – 3,965) and 2,461 birds in 2011 (95%CI = 1,682 – 3,348). Preliminary testing of the line-transect method in 2011 showed that it would not generate sufficient detections to effectively model bird density, and consequently, relatively precise population size estimates. Both species were fairly evenly distributed across Nihoa and appear to occur in all or nearly all available habitat. The time expended and area traversed by observers was similar among survey methods; however, point-transect surveys do not require that observers walk a straight transect line, thereby allowing them to avoid culturally or biologically sensitive areas and minimize the adverse effects of recurrent travel to any particular area. In general, point-transect surveys detect more birds than strip-survey methods, thereby improving precision and resulting population size and trend estimation. The method is also better suited for the steep and uneven terrain of Nihoa.
  • Loading...
    Thumbnail Image
    Item
    Developing accurate survey methods for estimating population sizes and trends of the critically endangered Nihoa millerbird and Nihoa finch.
    (2012-10) Gorressen, P. Marcos; Camp, Richard; Brinck, Kevin; Farmer, Chris
    This report describes the results of a comparative study of bird survey methods undertaken for the purpose of improving assessments of the conservation status for the two endemic passerines on the Island of Nihoa—Nihoa Millerbird (Sylviidae: Acrocephalus familiaris kingi) and Nihoa Finch (Fringilidae: Telespiza ultima; also referred herein as millerbird and finch)—both listed as endangered under the Federal Endangered Species Act (ESA) and Hawai`i Revised Statutes 195D. The current survey protocol, implemented since 1967, has produced a highly variable range of counts for both the millerbird and finch, making difficult assessments of population size and trend. This report details the analyses of bird survey data collected in 2010 and 2011 in which three survey methods were compared―strip-transect, line-transect, and point-transect sampling―and provides recommendations for improved survey methods and protocols. Funding for this research was provided through a Science Support Partnership grant sponsored jointly by the U.S. Geological Survey (USGS) and the U.S. Fish and Wildlife Service (USFWS). Point-transect surveys indicated that millerbirds were more abundant than shown by the strip-transect method, and were estimated at 802 birds in 2010 (95%CI = 652 – 964) and 704 birds in 2011 (95%CI = 579 – 837). Point-transect surveys yielded population estimates with improved precision which will permit trends to be detected in shorter time periods and with greater statistical power than is available from strip-transect survey methods. Mean finch population estimates and associated uncertainty were not markedly different among the three survey methods, but the performance of models used to estimate density and population size are expected to improve as the data from additional surveys are incorporated. Using the point-transect survey, the mean finch population size was estimated at 2,917 birds in 2010 (95%CI = 2,037 – 3,965) and 2,461 birds in 2011 (95%CI = 1,682 – 3,348). Preliminary testing of the line-transect method in 2011 showed that it would not generate sufficient detections to effectively model bird density, and consequently, relatively precise population size estimates. Both species were fairly evenly distributed across Nihoa and appear to occur in all or nearly all available habitat. The time expended and area traversed by observers was similar among survey methods; however, point-transect surveys do not require that observers walk a straight transect line, thereby allowing them to avoid culturally or biologically sensitive areas and minimize the adverse effects of recurrent travel to any particular area. In general, point-transect surveys detect more birds than strip-survey methods, thereby improving precision and resulting population size and trend estimation. The method is also better suited for the steep and uneven terrain of Nihoa.
  • Loading...
    Thumbnail Image
    Item
    Farallon de Medinilla seabird and Tinian moorhen analyses.
    (2016-01-06) Camp, Rick; Leopold, Christina; Brinck, Kevin; Juola, Frans
    This report assesses the trends in brown booby (Sula leucogaster), masked booby (S. dactylatra), and red-footed booby (S. sula) counts collected on Farallon de Medinilla and Mariana common moorhen (Gallinula chloropus guami) counts on Tinian, Commonwealth of the Northern Mariana Islands to help elucidate patterns in bird numbers. During either monthly or quarterly surveys between 1997 and 2014 counts of all four bird species were recorded, generating a relatively noisy time series revealing inter-annual variation in index counts by as much as 1,000%. For the purposes of assessing long-term population trends across years we chose a single, species-specific month to assess trends. Doing so reduces the effect of intraannual variation allowing the analysis to focus on inter-annual variation important to long-term trends assessment. There are clear fluctuations in the counts of all four species. Although the trends were non-significant, there is some evidence that masked and red-footed booby species have declined while brown booby and moorhen have increased.
  • Loading...
    Thumbnail Image
    Item
    Hawaiian Hoary Bat (Lasiurus cinereus semotus) Activity, Diet and Prey Availability at the Waihou Mitigation Area, Maui
    (2019-06) Pinzari, Corinna; Peck, Robert; Zinn, Terry; Gross, Danielle; Montoya-Aiona, Kristina; Brinck, Kevin; Gorresen, Marcos; Bonaccorso, Frank
    Habitat use, diet, prey availability, and foraging ecology of the endangered Hawaiian hoary bat (Lasiurus cinereus semotus, Vespertilionidae), was examined in the east Maui region inclusive of the Waihou Mitigation Area, Pu‘u Makua Restoration Area and the wind energy facility operated by Auwahi Wind Energy, LLC. The study was conducted to inform the mitigation and management requirements of Auwahi Wind Energy. Acoustic monitoring over the three-year period demonstrated that bats are present and actively forage year-round at the Waihou Mitigation Area. Over an 8-month span, 11 bats were uniquely color-banded and released, three of which were pregnant or lactating females, and highlights the importance of the area to breeding residents. Our study included the first genetic analysis of Hawaiian hoary bat diet, and confirms the inclusion of Coleoptera, Lepidoptera, Diptera, Hemiptera, and Blattodea among the prey items of this bat identified in previous microscopy-based studies. Hawaiian hoary bats consumed both native and non-native insect species, including several invasive species damaging to crop agriculture. Moths were the primary dietary component, both in prevalence among individual bats and the proportion of gene sequence counts. Through genetic analysis, we identified 18 Lepidoptera families (dominated by Noctuidae, Geometridae, Crambidae, Oecophoridae and Tortricidae) including 24 genus- or species-level taxa. Lepidoptera collected as caterpillars directly from vegetation did not appear in the diet of the eight bat guano samples at the genus or species level. However, the occurrence of moth larva on native plants suggests that reforestation that includes host plants for these insect families may provide food for locally foraging bats.
  • Loading...
    Thumbnail Image
    Item
    Monitoring Hawaiian waterbirds: evaluation of sampling methods to produce reliable estimates.
    (2016-01-25) Camp, Richard; Brinck, Kevin; Paxton, Kevin; Leopold, Christina
    We conducted field trials to assess several different methods of estimating the abundance of four endangered Hawaiian waterbirds: the Hawaiian duck (Anas wyvilliana), Hawaiian coot (Fulica alai), Hawaiian common moorhen (Gallinula chloropus sandvicensis) and Hawaiian stilt (Himantopus mexicanus knudseni). At two sites on Oʽahu, James Campbell National Wildlife Refuge and Hamakua Marsh, we conducted field trials where both solitary and paired observers counted birds and recorded the distance to observed birds. We then compared the results of estimates using the existing simple count, distance estimates from both point- and line-transect surveys, paired observer count estimates, bounded count, and Overton estimators. Comparing covariate recorded values among simultaneous observations revealed inconsistency between observers. We showed that the variation among simple counts means the current direct count survey, even if interpreted as a proportional index of abundance, incorporates many sources of uncertainty that are not taken into account. Analysis revealed violation of model assumptions that allowed us to discount distance-based estimates as a viable estimation technique. Among the remaining methods, point counts by paired observers produced the most precise estimates while meeting model assumptions. We present an example sampling protocol using paired observer counts. Finally, we suggest further research that will improve abundance estimates of Hawaiian waterbirds.
  • Loading...
    Thumbnail Image
    Item
    Richness, diversity, and similarity of arthropod prey consumed by a community of Hawaiian forest birds
    (2015-07) Banko, Paul; Peck, Robert; Brinck, Kevin; Leonard, David
    We evaluated the diet richness, diversity, and similarity of a community of seven endemic and two introduced passerine birds by analyzing the composition of arthropod prey in fecal samples collected during 1994–1998 at Hakalau Forest National Wildlife Refuge, Hawai‘i Island. Most prey fragments were identified to order, but we also distinguished among morpho-species of Lepidoptera based on the shape of larval (caterpillar) mandibles for higher resolution of this important prey type. Diets were compared among feeding specialists, generalists, and “intermediate” species and among introduced and three endangered Hawaiian honeycreeper (Fringillidae) species. Lepidoptera (moths), especially the larval (caterpillar) stage, comprised the greatest proportion of prey in samples of all bird species except for the introduced Japanese white-eye (Zosterops japonicus; JAWE). Araneae (spiders) was the most abundant order in JAWE samples and the second most abundant order for most other species. The two specialist honeycreepers ranked lowest in the richness and diversity of arthropod orders, but only the ‘akiapōlā‘au (Hemignathus munroi, AKIP) was significantly lower than the three generalist or intermediate honeycreeper species. The diversity of arthropod orders was significantly lower for the three endangered honeycreeper species compared to the two introduced species. No significant differences were observed among the five honeycreepers with respect to the arthropod orders they consumed. The use of arthropod orders taken by endangered honeycreepers and introduced species was significantly different in all paired comparisons except for JAWE and ‘ākepa (Loxops coccineus; AKEP). In terms of richness and diversity of caterpillar morpho-species in the diet, only the specialist, AKEP, was significantly lower than all three generalist and intermediate species. Both AKEP and AKIP consumed a significantly different diet of caterpillar morpho-species compared to at least one honeycreeper generalist or intermediate species. Among the endangered honeycreepers and introduced species, the richness and diversity of caterpillar morpho-species was significantly lower only for AKEP compared to both introduced species. Significant differences were not observed between endangered and introduced species in the distribution of caterpillar morpho-species in the diet. Only three morpho-species were heavily exploited, with one being consumed by all bird species. The heavy exploitation of very few morpho-species by specialists underscored their greater vulnerability to changes in forest food webs and threats to key arthropod prey. When evaluated together with data on overlap in foraging behavior, our results could be useful in evaluating competition between bird species at Hakalau. Nevertheless, invasive parasitoid wasps may impact key caterpillar prey more substantially than do introduced birds, highlighting the need for additional research to understand the ecology of caterpillar species and their interactions with both invertebrate and vertebrate consumers. The severe decline of specialist bird species historically and recently is a reminder of the importance of maintaining food web resilience, potentially through vigorous habitat restoration, to withstand the continuing and perhaps increasing threats from a diverse array of invasive species and climate change.
  • Loading...
    Thumbnail Image
    Item
    Status of forest birds on Rota, Mariana Islands.
    (2016-01-25) Camp, Richard; Brinck, Kevin; Gorressen, P. Marcos; Amidon, Fred; Radley, Paul; Berkowitz, S. Paul; Banko, Paul
    The western Pacific island of Rota is the third largest human inhabited island in the Mariana archipelago, and is designated an Endemic Bird Area. Between 1982 and 2012, 12 point-transect distance sampling surveys were conducted to assess population status. Surveys did not consistently sample the entire island; thus, we used a ratio estimator to estimate bird abundances in strata not sampled during every survey. Occupancy models of the 2012 survey revealed general patterns of habitat use and detectability among 11 species that could be reliably modeled. The endangered Mariana crow (Corvus kubaryi) was dispersed around the periphery of the island in steep forested habitats. In contrast, the endangered Rota white-eye (Zosterops rotensis) was restricted to the high-elevation mesa. Precision of detection probabilities and occupancy estimates and effects of habitat types, sampling conditions, and specific observers varied considerably among species, indicating that more narrowly defined classifications and additional observer training may improve the accuracy of predictive modeling. Population estimates of five out of ten native bird species, including collared kingfisher (Todiramphus chloris orii), Mariana crow, Mariana fruit-dove (Ptilinopus roseicapilla), Micronesian myzomela (Myzomela rubrata), and white-throated ground-dove (Gallicolumba xanthonura) declined over the 30-year time series. The crow declined sharply to fewer than 200 individuals (upper 95% confidence interval). Trends increased for Micronesian starling (Aplonis opaca), rufous fantail (Rhipidura rufifrons mariae), and white tern (Gygis alba). Rota white-eye numbers declined from 1982 to the late 1990s, but returned to 1980s levels by 2012. The trend for the yellow bittern (Ixobrychus sinensis) was inconclusive. The alien Eurasian tree sparrow (Passer montanus) apparently increased in number despite an unreliable trend assessment. Declines were noted in the other two alien birds, black drongo (Dicrurus macrocercus) and island collared-dove (Streptopelia bitorquata). Total bird densities on Rota were similar to those on Saipan and Tinian, which were lower than densities on Aguiguan. Overall, bird trends on Rota declined, whereas trends observed for the same period on Saipan and Tinian were mixed, and trends on Aguiguan were stable to increasing. We identified several sampling design and protocol procedures that may improve the precision of occupancy, status, and trend assessments. Continued monitoring and demographic sampling are needed to understand why most bird species on Rota are declining, to identify the causative agents, and to assess effectiveness of conservation actions for rare species, especially the Mariana crow.
University of Hawaii System seal The UH System repository is supported by various University of Hawai'i campuses and is maintained by Hamilton Library. Built on open-source DSpace software.
University of Hawaiʻi at Mānoa
Hamilton Library
2550 McCarthy Mall
Honolulu, HI 96822

© University of Hawaiʻi at Mānoa Library

  • sspace@hawaii.edu
  • Library Digital Collections Disclaimer and Copyright Information