Browsing by Author "Peck, Robert"
Now showing 1 - 13 of 13
Results Per Page
Sort Options
Item An assessment of arthropod prey resources at Nakula Natural Area Reserve, a potential site of reintroduction for kiwikiu (Pseudonestor xanthophrys) and Maui alauahio (Paroreomyza montana)(2016-01-21) Peck, Robert; Banko, Paul; Cappadonna, Justin; Steele, Claire; Leonard, David; Mounce, Hanna; Becker, C. Dusti; Swinnerton, KirstyHawaiian forest birds have declined dramatically since humans arrived in the archipelago. Birds from all foraging guilds have been affected but insectivorous species are currently at greatest risk of extinction. On the island of Maui, populations and ranges of the insectivorous kiwikiu (Maui parrotbill; Pseudonestor xanthophrys) and Maui ‘alauahio (Maui creeper; Paroreomyza montana) have declined significantly from historic levels primarily due to habitat loss, predation, disease, and food web disruption, leading to federal listings of endangered species and species of concern, respectively. Recovery plans for these birds include reestablishment of populations in parts of their former range. Nakula Natural Area Reserve on the leeward side of Haleakalā Volcano has been targeted for release of wild-caught or captive-bred individuals. The mesic, montane koa-‘ōhi‘a (Acacia koa-Metrosideros polymorpha) forest at Nakula has been heavily impacted through grazing by feral ungulates, but recent management actions to exclude these animals are promoting forest recovery. The objective of this study was to assess the arthropod prey base at Nakula in preparation for reintroductions of kiwikiu and Maui ‘alauahio. To accomplish that goal, we compared arthropod abundances at Nakula to those at Hanawi Natural Area Reserve and Waikamoi Preserve, areas where kiwikiu and Maui ‘alauahio are currently found. We also identified diets of kiwikiu and Maui ‘alauahio from fecal samples to better understand and evaluate the prey base at Nakula. Assessment methods included clipping branch tips to sample arthropods within the foliage of koa and ‘ōhi‘a, using traps to quantify arthropods on koa and ‘ōhi‘a bark surfaces, counting exit holes to quantify abundances of beetles (Coleoptera) within dead branches of koa, and measuring the density of arthropods within the stems of ‘ākala (Rubus hawaiiensis). The diet of kiwikiu was dominated by caterpillars (Lepidoptera larvae), which comprised 90% of all prey items for 50 adult birds and 98% of all prey for two nestlings. Caterpillars were also the most important prey for Maui ‘alauahio (43% for 104 adult birds) although spiders (Araneae, 16%), beetles (12%) and true bugs, planthoppers and psyllids (Hemiptera; 12%) were also important. Caterpillars were generally the most abundant type of arthropod in the foliage of koa and ‘ōhi‘a, although spiders, beetles and hemipterans were also common. Total arthropod biomass and caterpillar biomass at Nakula was as great, or greater, than that observed at Hanawi and Waikamoi per unit of foliage of both koa and ‘ōhi‘a. Spiders generally dominated the bark fauna on both koa and ‘ōhi‘a at all sites although isopods (Isopoda), millipedes (Myriapoda: Millipeda) and lacewings (Neuroptera) were also abundant at Waikamoi and Hanawi. Total arthropod biomass on bark, as well as the biomass of several individual taxa, was significantly lower at Nakula than the other sites. Our measurement of the density of beetle exit holes in dead koa branches found no difference between Nakula and Waikamoi. Finally, no difference existed in the abundance of arthropods (primarily caterpillars and moth pupae) within ‘ākala stems among sites. With the exception of bark surfaces, our results suggest that the arthropod prey base for birds on primary foraging substrates at Nakula is similar to that found at two sites within the current range of kiwikiu and Maui ‘alauahio. However, our results should be viewed with caution because they are limited to the scale of individual branch, tree, or ‘ākala stem. To complete the assessment, our results should be scaled up to the landscape level by determining the density of each substrate within each site. Key arthropod prey of kiwikiu and Maui ‘alauahio are available at Nakula and, as habitat restoration continues, food abundance should increase to the point at which populations of these birds can be supported.Item Ants of the National Park of American Samoa.(2016-01-06) Peck, Robert; Banko, PaulAmerican Samoa makes up the eastern end of the Samoan Archipelago. On the islands of Tutuila, Taʽū and Ofu, the National Park of American Samoa (NPSA) protects about 4,000 ha of coastal, mid-slope and ridge-top forest. While the ant fauna of the Samoan Archipelago is considered relatively well documented, much of NPSA has never been surveyed for ants, leaving the fauna and its distribution poorly known. To address this shortfall, we systematically surveyed ants within the Tutuila and Taʽū units of NPSA using standard methods (hand collecting, litter sifting, and baits) at 39 sites within six vegetation types ranging from 8 to 945 m elevation. Forty-four ant species were identified, 19 of which are exotic to the Samoan Archipelago. Two notoriously aggressive species, Anoplolepis gracilipes and Pheidole megacephala were detected at two and seven sites, respectively. Both of these species largely excluded all other ants from bait, although their impact on ant community composition is unclear. A suite of habitat variables measured at each site was assessed to explain park-wide ant distributions. Of eight variables evaluated, only elevation was associated with ant community structure, as the ratio of native to exotic ant species increased significantly with elevation on Tutuila. Our survey documented two species not previously reported from American Samoa. Strumigenys eggersi, detected at 12 sites, appears to be a new immigrant to the Pacific Basin. A species of Pheidole was collected that likely represents an undescribed species. Solenopsis geminata, an aggressive species first reported on Tutuila in 2002, was not detected during our survey.Item Arthropod community structure on bark of koa (Acacia koa) and `ohi`a (Metrosideros polymorpha)(2016-01-25) Peck, Robert; Banko, Paul; Stelmach, MattThe arthropod community associated with tree bark contains a wide variety of taxa but is poorly described, particularly in Hawaiʽi. Our overall goals were to evaluate the abundance of arthropods available to foraging birds and how variation in bark substrates may contribute to arthropod distributions in native forests. Our study aimed to identify this fauna on the dominant canopy-forming trees koa (Acacia koa) and ʽōhiʽa (Metrosideros polymorpha) within wet montane forest at Hakalau Forest National Wildlife Refuge, Hawaiʽi Island. At two sites roughly similar in elevation and habitat structure, we deployed three trap types designed to intercept arthropods moving along bark within tree canopies: a bole trap based on a pre-existing design and two traps specially designed for this study. Bole traps were placed on koa and ʽōhiʽa while branch traps were established on large and small branches of ʽōhiʽa. In total, 15 arthropod orders were identified, with Collembola most abundant (number/trap-day) generally followed by Isopoda and Araneae. Differences in abundance were found in some instances, but overall, few differences were detected between tree species or sites. Relative abundances of arthropod groups were also generally similar between trees and sites and among different parts of ʽōhiʽa. These results indicate that bark-dwelling arthropod communities are similar on koa and ʽōhiʽa, and birds should not develop strong preferences for gleaning arthropods from the bark of either species of tree based on prey availability.Item Arthropods of Rose Atoll with special reference to ants and Pulvinaria urbicola scales (Hemiptera: coccidae) on Pisonia grandis trees.(2016-01-24) Peck, Robert; Banko, Paul; Pendleton, Frank; Schmaedick, Mark; Ernsberger, KelsieRose Atoll, at the eastern end of the Samoan Archipelago, is a small but important refuge for seabirds, shorebirds, and sea turtles. While the vertebrate community is relatively well-studied, the terrestrial arthropod fauna, and its role in ecosystem function, are poorly known. Arthropods may be influencing the decline of Pisonia grandis, an ecologically important tree that once dominated the 6.6 ha of land on Rose Atoll. Reasons for the decline are not fully understood but a facultative relationship between two invasive arthropods, the soft scale Pulvinaria urbicola and ants, likely has contributed to tree death. The primary objectives of this study were to systematically survey the terrestrial arthropod fauna and identify ant species that tend scales on Pisonia. Using an array of standard arthropod collecting techniques, at least 73 species from 20 orders were identified, including nine ant species. Of the ants collected, only Tetramorium bicarinatum and T. simillimum were observed tending scales on Pisonia. No known natural enemies of Pulvinaria scales were found, suggesting little predation on scale populations. Treatment of Pisonia with the systemic insecticide imidacloprid failed to eliminate Pulvinaria scales, although short-term suppression apparently occurred. The arthropod fauna of Rose Atoll is dominated by exotic species that likely have a significant impact on the structure and function of the island’s ecosystem.Item Developing tools to eradicate ecologically destructive ants on Rose Atoll: effectiveness and attractiveness of formicidal baits(2016-01-24) Peck, Robert; Banko, Paul; Pendleton, FrankA key factor contributing to the decline in the population of Pisonia grandis on Rose Atoll is an infestation of the non-native scale, Pulvinaria urbicola (Homoptera: Coccidae). Ants, in facultative relationships with scale insects, may facilitate scale population growth and increase their effect on plant hosts. Three ant species found on Rose Atoll, Tetramorium bicarinatum, T. simillimum, and Pheidole oceanica, are capable of tending Pulvinaria on Pisonia and may have contributed to the demise of the trees on the atoll. Replicated trials conducted on Rose Atoll during 17–21 March 2013 tested the effectiveness and relative attractiveness of five formicidal baits potentially to be used to eradicate these ants on the atoll. Three baits contained toxins (hydramethylnon in Amdro® and Maxforce®, indoxacarb in Provaunt®) and two baits contained an insect growth regulator (IGR; pyriproxyfen in Distance® and s-methoprene in Tango®). Amdro, Distance, and Maxforce are granular baits while Provaunt and Tango were mixed with adjuvants to form a gel-like matrix. Results varied among ant species and baits, but Provaunt was highly effective against workers of both Tetramorium species while Amdro and Maxforce were highly effective against T. simillimum and P. oceanica. Limited time on the island prevented the evaluation of the effectiveness of the IGR baits. The relative attractiveness of the baits generally mirrored their ability to kill worker ants. Tetramorium simillimum was attracted to all five baits; T. bicarinatum was attracted to Provaunt, Distance, and Tango; and P. oceanica was attracted to the three granular baits. These results and the small area of Rose Atoll suggest that island-wide application of formicidal baits may result in eradication of these ants, but an application strategy targeting all three species would more likely succeed with the use of multiple baits.Item Distribution of invasive ants and methods for their control in Hawai`i Volcanoes National Park.(2016-01-25) Peck, Robert; Banko, Paul; Cappadonna, Justin; Snook, Kirsten; Euaparadorn, MelodyThe first invasive ants were detected in Hawai`i Volcanoes National Park (HAVO) more than 80 years ago. Ecological impacts of these ants are largely unknown, but studies in Hawai`i and elsewhere increasingly show that invasive ants can reduce abundance and diversity of native arthropod communities as well as disrupt pollination and food webs. Prior to the present study, knowledge of ant distributions in HAVO has primarily been restricted to road- and trail-side surveys of the Kīlauea and Mauna Loa Strip sections of the park. Due to the risks that ants pose to HAVO resources, understanding their distributions and identifying tools to eradicate or control populations of the most aggressive species is an important objective of park managers. We mapped ant distributions in two of the most intensively managed sections of the park, Mauna Loa Strip and Kahuku. We also tested the efficacy of baits to control the Argentine ant (Linepithema humile) and the big-headed ant (Pheidole megacephala), two of the most aggressive and ecologically destructive species in Hawai`i. Efficacy testing of formicidal bait was designed to provide park managers with options for eradicating small populations or controlling populations that occur at levels beyond which they can be eradicated. Within the Mauna Loa Strip and Kahuku sections of HAVO we conducted systematic surveys of ant distributions at 1625 stations covering nearly 200 km of roads, fences, and transects between August 2008 and April 2010. Overall, 15 ant species were collected in the two areas, with 12 being found on Mauna Loa Strip and 11 at Kahuku. Cardiocondyla kagutsuchi was most widespread at both sites, ranging in elevation from 920 to 2014 m, and was the only species found above 1530 m. Argentine ants and big-headed ants were also found in both areas, but their distributions did not overlap. Surveys of Argentine ants identified areas of infestation covering 560 ha at Mauna Loa Strip and 585 ha at Kahuku. At both sites, upper boundaries of big-headed ants coincided with lower boundaries of Argentine ants. Significantly, Wasmannia auropunctata (little fire ant) was not detected during our surveys. Formicidal baits tested for controlling Argentine ants included Xstinguish™ (containing fipronil at 0.01%), Maxforce® (hydramethylnon 1.0%), and Australian Distance® (pyriproxyfen 0.5%). Each bait was distributed evenly over four 2500 m2 replicate plots. Applications were repeated approximately four weeks after the initial treatment. Plots were subdivided into 25 subplots and ants monitored within each subplot using paper cards containing tuna bait at approximately one week intervals for about 14 weeks. All treatments reduced ant numbers, but none eradicated ants on any of the plots. Xstinguish™ produced a strong and lasting effect, depressing ant abundance below 1% of control plot levels within the first week and for about eight weeks afterward. Maxforce® was slower to attain maximum effectiveness, reducing ants to 8% of control levels after one week and 3% after six weeks. Australian Distance® was least effective, decreasing ant abundance to 19% of control levels after one week with numbers subsequently rebounding to 40% of controls at four weeks and 72% at 10 weeks. In measurements of the proportion of bait cards at which ants were detected, Xstinguish™ clearly out-performed Maxforce®, reaching a minimum detection rate of 3% of bait cards at one week compared to a low of 19% for Maxforce® two weeks following the second treatment. Although ant abundances were dramatically reduced on Xstinguish™ plots, it is not currently registered for use in the USA. Our results suggest that ant abundance can be greatly reduced using registered baits, but further research is needed before even small-scale eradication of Argentine ants can be achieved. Formicidal baits tested to control big-headed ants included Amdro® (hydramethylnon 0.75%), Xstinguish™ (fipronil 0.01%), Extinguish® Plus (a blend of hydramethylnon 0.365% and S-methoprene 0.25%), and Australian Distance® Plus (hydramethylnon 0.365% and pyriproxyfen 0.25%). Application methods were the same as used for Argentine ants, with baits being applied on two occasions (approximately four weeks apart) on four 2500 m2 replicate plots. All four baits reduced populations to below 2% of control plot levels within one week of treatment. Amdro® was particularly effective as no ants were detected on two of the four Amdro® plots immediately following treatment. Suppression was long-lived in three of the treatments; Amdro®, Australian Distance® Plus, and Extinguish® GENERAL INTRODUCTION Plus all maintained ant abundances at levels less than 1% of control plots over 12 weeks of study. In contrast, ant abundances in Xstinguish™ plots rose to 7% of control plots after four weeks and 20% after 10 weeks. Our results corroborate other recent studies indicating that small populations of big-headed ants can be controlled in natural areas using products registered in the USA.Item Distribution of yellow crazy ants (Anoplolepis gracilipes) and notes on other ant species at Wake Atoll, 6–21 October 2023(University of Hawai'i at Hilo, 2024-10-31) Plentovich, Sheldon; Peck, Robert; Sachs, ElyseWake Atoll, located in the central Pacific Ocean, is a tropical coral atoll comprised of three islands totaling 696 ha of emergent land. Wake Atoll supports at least 17 species of non-native ants, but one species, the yellow crazy ant (Anoplolepis gracilipes), is especially harmful to ecosystems, including seabirds, which are federally protected species and nest throughout Wake Atoll. Our objective was to map the distribution of yellow crazy ants (YCA) across Wake Atoll to provide U.S. Air Force managers with information that could inform an eradication strategy for this species. In addition, we documented the presence of other ant species identified during our survey. We used a 50 x 50-m cell-based sampling grid to survey for YCA and other ant species. YCA were widespread across the atoll, occupying all three islands and were detected in 566 of the 3,675 (15.4%) cells surveyed, covering an area of about 142 ha. The highest proportion of cells containing YCA was on Wilkes Island (99 of 400 cells or 24.8%), followed by Wake Island (395 of 2,760 cells or 14.3%) and Peale Island (72 of 518 cells or 14.0%). YCA detections on Wilkes Island were restricted to Wilkes South (99 of 202 cells or 49.0%); no YCA were found on Wilkes North, an important area that supports the most diverse assemblage of nesting seabirds on Wake Atoll. Based on technologies developed to eradicate YCA from Johnston Atoll and elsewhere, eradicating YCA from Wake Atoll appears technically feasible. The occurrence of discrete populations (i.e., clusters of occupied cells separated from other clusters of occupied cells) within and among islands could allow a stepwise strategy where the short-term outcome of the treatment of one population is independent of the outcome of another treatment. Without action, the high-density YCA population on Wilkes South could breach the narrow (~50 m), sometimes dry, channel separating Wilkes North and South, posing a serious threat to nesting seabirds present on Wilkes North. Eradicating YCA from Wilkes South would create a buffer from YCA and reduce the threat of northward movement of YCA. We also detected 12 ant species other than YCA during our survey, including Lepisiota frauenfeldi, a new record for the atoll.Item Dynamics and ecological consequences of the 2013-2014 Koa moth outbreak at Hakalau Forest National Wildlife Refuge(2016-01-21) Banko, Paul; Peck, Robert; Yelenik, Stephanie; Paxton, Eben; Bonaccorso, Frank; Montoya-Aiona, Kristina; Foote, DavidA massive outbreak of the koa moth (Geometridea: Scotorythra paludicola) defoliated more than a third of the koa (Acacia koa) forest on Hawai‘i Island during 2013−2014. This was the largest koa moth outbreak ever recorded and the first on the island since 1953. The outbreak spread to sites distributed widely around the island between 800−2,000 m elevation and in wet rainforest to dry woodland habitats. We monitored the outbreak at two windward forest sites (Laupāhoehoe and Saddle Road Kīpuka) and one leeward forest site (Kona), and we studied the dynamics of the outbreak and its impacts on the forest ecosystem at Hakalau Forest National Wildlife Refuge, our higher elevation windward site. Study sites at Hakalau included two stands of koa that were planted (reforestation stands) in former cattle pastureland about 20 years earlier and two stands of koa that were dominated by ‘ōhi‘a (Metrosideros polymorpha) and that were naturally recovering from cattle grazing (forest stands). We observed one outbreak at Hakalau, multiple outbreaks at the two other windward sites, but no outbreak at the leeward site. Caterpillars at Hakalau reached peak estimated abundances of more than 250,000 per tree and 18,000,000 per hectare, and they removed between 64−93% of the koa canopy in managed forest stands. Defoliation was more extensive in naturally recovering forest, where ‘ōhi‘a dominated and koa was less abundant, compared to the planted stands, where koa density was high. Koa trees were still growing new foliage six months after being defoliated, and leaves were produced in greater proportion to phyllodes, especially by small koa (≤ 8 cm dbh) and by larger trees in forest stands, where light levels may have remained relatively low after defoliation due to the high cover of ‘ōhi‘a. Small branches of many trees apparently died, and canopy regrowth was absent or low in 9% of koa trees and seedlings, which indicates the likely level of mortality. Between 2,000−5,000 kg/ha of frass fell during the defoliation event, resulting in the deposition of up to 200 kg/ha of highly labile nitrogen on the forest floor in less than two months. The deposition of nitrogen was detected as pulses in resin-available nitrogen in the top 5−10 cm of soil at two of three sites. These sites showed elevated soil nitrogen for about seven months. Nitrogen content of understory plant foliage, which is indicative of nitrogen uptake, suggested weak and variable effects of nitrogen deposition in the soil. Foliar nitrogen increased slightly in alien pasture grasses four months after the deposition of frass, although distinctive increases were not detected in native woody species. Birds responded to the abundance of caterpillars by increasing their activity in koa during the buildup of caterpillars and decreasing their use of koa after defoliation. During the outbreak, caterpillars increased in the diets of the two generalist insectivores we examined, and nearly all species gained weight. Bats responded to the abundance of moths by compression of active foraging into the first three hours of darkness each night after presumably having reached a digestive bottleneck. Reduced foraging activity by bats also resulted in lower indices of detectability based upon acoustic monitoring when compared to non-outbreak years. Parasitoid wasps tracked caterpillar abundance, but the low rate at which they attacked caterpillars suggests that they had little influence on the population. The predatory yellowjacket (Vespula pensylvanica) did not respond to the outbreak. Although a single, protracted outbreak occurred at Hakalau, multiple outbreaks and defoliations occurred at lower elevations. Our results provide a broad foundation for evaluating the dynamics and impacts of future Scotorythra outbreaks.Item Efforts to eradicate yellow crazy ants on Johnston Atoll: Results from Crazy Ant Strike Team IX, December 2014-June 2015(2015-12-04) Peck, Robert; Banko, Paul; Donmoyer, K.; Kropidlowski, S.; Pollock, A.The ecologically destructive yellow crazy ant (YCA; Anoplolepis gracilipes) was first detected on Johnston Atoll in January 2010. Within eight months, the U.S. Fish and Wildlife Service had mobilized its first crazy ant strike team (CAST), a group of biologists dedicated to testing and identifying insecticidal baits to be used to eradicate the ant on the atoll. During December 2014‒May 2015 CAST IX focused on testing hydrogel crystals saturated with sucrose solution (25%) carrying the insecticides thiamethoxam and dinotefuran against YCA. A series of experiments, including artificial nest box trials, and field-based palatability trials and eradication tests on small (500 m2 or 0.05 ha) and large plots (2500 m2 or 0.25 ha), were conducted to test concentrations of thiamethoxam ranging from 0.0005% to 0.01%, and dinotefuran at 0.05%. Additionally, the cat food-based matrix containing dinotefuran (0.05%), the standard bait used to suppress YCA on Johnston since 2011, and textured vegetable protein (TVP) carrying dinotefuran at 0.1% and 0.05% were included in large plot tests. Nest box trials were inconclusive due to a consistent loss of queen and worker ants in control boxes, so they were discontinued. Palatability trials suggested higher dosages of thiamethoxam (0.005 and 0.01%) were less attractive than lower dosages (0.0005 and 0.001%) and controls (sucrose only), but small and large plot experiments failed to identify a thiamethoxam concentration that was consistently effective at killing YCA. In contrast, hydrogel containing dinotefuran was consistently effective, killing >95% of YCA on small and large plots. As expected, the cat food bait effectively reduced YCA abundances, but was slightly less effective than hydrogel containing dinotefuran over time. Three successive, approximately weekly treatments of large plots with hydrogel bait, or other baits followed by hydrogel bait, suggest an increasing overall effectiveness, with no aversion of YCA to the bait. This finding is important in that it indicates that hydrogel bait can be applied at short time intervals, potentially resulting in relatively constant exposure of YCA to highly attractive, yet toxic, sucrose-based bait. TVP performed similar to hydrogel, reducing YCA abundance >92% at both concentrations tested. Finally, dosages of hydrogel containing dinotefuran at 6, 12 and 24 l/0.25 ha were all effective at reducing YCA on large plots. Overall, results from these experiments suggest that hydrogel containing dinotefuran (0.05%) is a promising tool for eradicating YCA on Johnston Atoll.Item Hawaiian Hoary Bat (Lasiurus cinereus semotus) Activity, Diet and Prey Availability at the Waihou Mitigation Area, Maui(2019-06) Pinzari, Corinna; Peck, Robert; Zinn, Terry; Gross, Danielle; Montoya-Aiona, Kristina; Brinck, Kevin; Gorresen, Marcos; Bonaccorso, FrankHabitat use, diet, prey availability, and foraging ecology of the endangered Hawaiian hoary bat (Lasiurus cinereus semotus, Vespertilionidae), was examined in the east Maui region inclusive of the Waihou Mitigation Area, Pu‘u Makua Restoration Area and the wind energy facility operated by Auwahi Wind Energy, LLC. The study was conducted to inform the mitigation and management requirements of Auwahi Wind Energy. Acoustic monitoring over the three-year period demonstrated that bats are present and actively forage year-round at the Waihou Mitigation Area. Over an 8-month span, 11 bats were uniquely color-banded and released, three of which were pregnant or lactating females, and highlights the importance of the area to breeding residents. Our study included the first genetic analysis of Hawaiian hoary bat diet, and confirms the inclusion of Coleoptera, Lepidoptera, Diptera, Hemiptera, and Blattodea among the prey items of this bat identified in previous microscopy-based studies. Hawaiian hoary bats consumed both native and non-native insect species, including several invasive species damaging to crop agriculture. Moths were the primary dietary component, both in prevalence among individual bats and the proportion of gene sequence counts. Through genetic analysis, we identified 18 Lepidoptera families (dominated by Noctuidae, Geometridae, Crambidae, Oecophoridae and Tortricidae) including 24 genus- or species-level taxa. Lepidoptera collected as caterpillars directly from vegetation did not appear in the diet of the eight bat guano samples at the genus or species level. However, the occurrence of moth larva on native plants suggests that reforestation that includes host plants for these insect families may provide food for locally foraging bats.Item Host plant associations of Lepidoptera and implications for forest bird management at Hakalau Forest National Wildlife Refuge(2022-07-11) Banko, Paul; Peck, Robert; Munstermann, Maya; Jaenecke, KellyForests dominated or co-dominated by ‘ōhi‘a (Metrosideros polymorpha) are critical to most Hawaiian forest birds, but fungal diseases causing Rapid ‘Ōhi‘a Death (ROD) threaten ‘ōhi‘a-based food webs that support native bird communities on Hawai‘i Island. Caterpillars are the most frequently consumed arthropod prey of native birds and their young and are especially frequent in the diets of one threatened (T) and three endangered (E) species (“listed” species) at Hakalau Forest National Wildlife Refuge (Hakalau): ‘akiapōlā‘au (Hemignathus wilsoni, E), ‘alawī (Hawai‘i creeper; Loxops mana, E), Hawai‘i ‘ākepa (L. coccineus, E), and ‘i‘iwi (Drepanis coccinea, T). Hakalau harbors the largest and most stable populations of listed forest birds in Hawai‘i, presumably due to the availability of food resources and the extent of suitable, managed habitat above the range of mosquito-borne avian malaria. Because a previous study indicated that only a few caterpillar species were important in the diets of listed birds at Hakalau, we investigated the distribution of caterpillars on common host plants available to foraging birds. Eleven native plant species hosted two or more taxa identified to genus or species, with at least seven from ‘ōhi‘a, six from koa (Acacia koa), and five from ‘ākala (Rubus hawaiensis). We identified 16 taxa to genus or species from 9 families, assigning 11 to species. Leaves, which were the focus of our sampling effort, were the substrate used by 20 caterpillar taxa, and dead wood or bark was used by 7 taxa. In a previous study, we classified 19 morphotypes of caterpillar mandibles in the diets of native and alien birds at Hakalau, and in the present study we dissected mandibles from caterpillars that likely matched 10 of those morphotypes. These 10 morphotypes potentially represented >95% of caterpillar prey found in the earlier diet study and were collected from 11 host plant species, with ‘ōhi‘a hosting 8 morphotypes, 4 of which were exclusive to ‘ōhi‘a. The most widely hosted morphotype was found on all 11 plant species that we sampled, including ‘ōhi‘a, but the other 9 morphotypes were found on 1–7 hosts. As shown by the previous diet study, each of the listed bird species consumed caterpillar prey consisting mostly of combinations of two morphotypes drawn from a pool of only five, indicating a high degree of specialization. In the present study, we collected three of the five key morphotypes only on ‘ōhi‘a, highlighting the importance of this tree to listed bird species. Because ‘ōhi‘a forests in Hakalau remain vulnerable to ROD, measures to mitigate the impacts of reduced ‘ōhi‘a cover are important to consider from the perspective of forest bird food webs and diet. Ongoing reforestation of former pasturelands with koa and common understory species should provide alternative caterpillar prey for forest birds. Our results and information from the literature indicate that koa supports, to varying degrees, nearly all forest birds at Hakalau, while ‘ākala, ‘ōhelo (Vaccinium calycinum), kōlea (Myrsine lessertiana), ‘ōlapa (Cheirodendron trigynum), pūkiawe (Leptecophylla tameiameiae), and māmaki (Pipturus albidus) could benefit bird populations by increasing prey availability and structural complexity in koa-dominated stands. Foraging studies and additional research to identify species and host plant associations of important forest bird prey, including caterpillars and other arthropods, can help managers evaluate the complex interactions between native forest birds and their food webs and habitats.Item Richness, diversity, and similarity of arthropod prey consumed by a community of Hawaiian forest birds(2015-07) Banko, Paul; Peck, Robert; Brinck, Kevin; Leonard, DavidWe evaluated the diet richness, diversity, and similarity of a community of seven endemic and two introduced passerine birds by analyzing the composition of arthropod prey in fecal samples collected during 1994–1998 at Hakalau Forest National Wildlife Refuge, Hawai‘i Island. Most prey fragments were identified to order, but we also distinguished among morpho-species of Lepidoptera based on the shape of larval (caterpillar) mandibles for higher resolution of this important prey type. Diets were compared among feeding specialists, generalists, and “intermediate” species and among introduced and three endangered Hawaiian honeycreeper (Fringillidae) species. Lepidoptera (moths), especially the larval (caterpillar) stage, comprised the greatest proportion of prey in samples of all bird species except for the introduced Japanese white-eye (Zosterops japonicus; JAWE). Araneae (spiders) was the most abundant order in JAWE samples and the second most abundant order for most other species. The two specialist honeycreepers ranked lowest in the richness and diversity of arthropod orders, but only the ‘akiapōlā‘au (Hemignathus munroi, AKIP) was significantly lower than the three generalist or intermediate honeycreeper species. The diversity of arthropod orders was significantly lower for the three endangered honeycreeper species compared to the two introduced species. No significant differences were observed among the five honeycreepers with respect to the arthropod orders they consumed. The use of arthropod orders taken by endangered honeycreepers and introduced species was significantly different in all paired comparisons except for JAWE and ‘ākepa (Loxops coccineus; AKEP). In terms of richness and diversity of caterpillar morpho-species in the diet, only the specialist, AKEP, was significantly lower than all three generalist and intermediate species. Both AKEP and AKIP consumed a significantly different diet of caterpillar morpho-species compared to at least one honeycreeper generalist or intermediate species. Among the endangered honeycreepers and introduced species, the richness and diversity of caterpillar morpho-species was significantly lower only for AKEP compared to both introduced species. Significant differences were not observed between endangered and introduced species in the distribution of caterpillar morpho-species in the diet. Only three morpho-species were heavily exploited, with one being consumed by all bird species. The heavy exploitation of very few morpho-species by specialists underscored their greater vulnerability to changes in forest food webs and threats to key arthropod prey. When evaluated together with data on overlap in foraging behavior, our results could be useful in evaluating competition between bird species at Hakalau. Nevertheless, invasive parasitoid wasps may impact key caterpillar prey more substantially than do introduced birds, highlighting the need for additional research to understand the ecology of caterpillar species and their interactions with both invertebrate and vertebrate consumers. The severe decline of specialist bird species historically and recently is a reminder of the importance of maintaining food web resilience, potentially through vigorous habitat restoration, to withstand the continuing and perhaps increasing threats from a diverse array of invasive species and climate change.Item Survey of invasive ants at Hakalau Forest NWR(2016-01-26) Peck, Robert; Banko, PaulWe conducted a survey for invasive ants at Hakalau Forest National Wildlife Refuge, Hawai‘i Island, during 2009–2010 to evaluate potential threats to native arthropod communities and food webs. The focal area of the survey was the upper portion of the Hakalau Unit of the refuge, where native forest was being restored in abandoned cattle pastures. This area, between 1575 and 1940 m elevations, contained much alien kikuyu grass (Pennisetum clandestinum), but koa (Acacia koa) trees and other native species that were planted in the past 20 years were rapidly filling in the pasture. We surveyed for ants at pre-determined points along roads, fences, and corridors of planted koa. Sampling methods primarily consisted of hand searching and pitfall traps, but bait cards were used additionally in some instances. Our results indicated that a single species, Cardiocondyla kagutsuchi, was widespread across the upper portion of the refuge. Cardiocondyla kagutsuchi seemed absent, or at least rare, in areas of tall, dense grass. Due to the undulating topography of the area, however, the dense grass cover was interspersed with outcroppings of exposed, gravelly soil. Presumably due to warming by the sun, many of the outcropped habitats supported colonies of C. kagutsuchi. We did not detect ants in the old-growth forest below the abandoned pastures, presumably because microhabitat conditions under the forest canopy were unsuitable. Although ecological impacts of C. kagutsuchi have not been reported, they may be limited by the small size of the ant, the relatively small size of colonies, and the apparent preference of the ant for disturbed areas that are dominated by alien species. Notably, our survey of Keanakolu-Mana Road between the Observatory Road (John A. Burns Way) and the town of Waimea detected a population of Argentine ants (Linepithema humile) approximately 5.1 km north of the Maulua Section of the refuge. We also surveyed for ants on the Kona Forest Unit of the refuge. This small survey focused on approximately 14 km of roads located below about 1600 m elevation. We found two species, Solenopsis papuana and Nylanderia bourbonica. Solenopsis papuana was more widespread, being found along the southern, northern, and western boundaries, while N. bourbonica was detected only at 790 m elevation on the southern boundary. Of the two species, S. papuana seemed more likely to affect native arthropod communities due to its tendency to form relatively large, aggressive colonies and its ability to inhabit intact mesic and wet forests below 1100 m elevation. In contrast, the restriction of N. bourbonica to disturbed habitats indicated a reduced threat to native arthropod communities. Our results on the Kona Forest Unit corroborated those of a study conducted during 1999–2000, although the earlier study was more intensive over time and yielded small numbers of two additional species, Cardiocondyla wroughtonii and Tetramorium bicarinatum, both of which were detected below 792 m elevation along the southern boundary.