Repository logo
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of UH System Repository
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Price, Jonathan P."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Baseline survey for rare plant species and native plant communities within the Kamehameha schools' Lupea Safe Harbor Planning Project Area, North Kona District, Island of Hawai`i.
    (2010-12) Jacobi, James D.; Warshauer, Frederick R.; Price, Jonathan P.
    Kamehameha Schools, in conjunction with several federal, state, and private organizations, has proposed to conduct conservation management on approximately 5,340 ha (~13,200 acres) of land they own in the vicinity of Kīpukalupea in the North Kona District on the island of Hawai`i. The goal of this program is to restore and enhance the habitat to benefit native plant and animal populations that are currently, or were formerly, found in this site. The initial phase of this project has been focused on various activities including conducting baseline surveys for bird and plant species so Kamehameha Schools could develop a Safe Harbor Agreement (SHA) for the proposed project lands relative to the habitat management and species reintroduction efforts they would like to conduct in the Lupea Project area. This report summarizes methods that were used to collect field data on plant species and communities within the project area, and the results of that initial survey. The information was used to calculate baseline values for all listed threatened or endangered plant species found, or expected to be found, within the project area, and to design a monitoring program to assess changes in plant communities and rare plant species relative to management activities over the duration of the SHA. The Lupea Project area contains excellent examples of several high elevation native plant communities including montane dry forest and woodland, native subalpine shrubland, and native grassland. Between November 2003 and January 2004 we sampled plant communities and species along seven transects established through the project area. A total of 109 plant species were found during this survey, within the transect grid and in nearby areas. Forty-four of these plants are endemic species, 21 are indigenous species, 43 are introduced, and one species is believed to have been introduced to Hawai`i by early Polynesian settlers. Only one federally listed Endangered plant, Asplenium peruvianum var. insulare, was found within the survey area. Additionally, we found one immature plant that may be Sicyos macrophyllus, a candidate species for listing.However, we were not able to make a definite determination of this species‟ identity since it did not have fruits or flowers. Finally, we documented four plant species within the survey area that have no official status designation but are considered to be rare and informally recognized as “species of concern” (SOC) as they appear to be declining in distribution and abundance statewide. These included Chamaesyce olowaluana, viii Eragrostis deflexa, Sisyrinchium acre, and Tetramolopium consanguineum. In addition to conducting field surveys, we performed a query on a spatial database developed by Dr. Jonathan Price of the University of Hawai`i at Hilo which models the potential range of all native Hawaiian plant species based on historic observations and a set of environmental parameters. The potential species list for the Lupea Project area includes 47 taxa that we did not find during our surveys, as well as three other listed species that were not modeled by Price, but known from historic records in adjacent habitats. Some of these species are extremely rare or, in some cases have been locally extirpated. However, most of the plants that were predicted but not found during our surveys are expected to be located with additional searching, or may potentially recolonize the area following the elimination of ungulates and initiation of other restoration efforts. Forty-four introduced plant species were found within the survey area, seven of which are considered to be highly invasive. These include the grasses Pennisetum clandestinum and Pennisetum setaceum, vines Delairea odorata and Passiflora tarminiana, herbs Senecio madagascariensis and Verbascum thapsus, and the shrub Rubus niveus. Non-zero baseline values are proposed for the one listed plant species found within the Lupea Project area, one species that is a candidate for listing, and the four other rare species we found that may be considered for listing in the future. Additionally, a zero baseline is proposed for 23 other species that were predicted, but not found within the project area. These include 14 Endangered species, one Threatened species, two candidates for listing, and six species of concern. Subsequent monitoring of the site will be necessary to determine if the populations of these species have increased or decreased relative to their baseline values. It is presumed that the management activities Kamehameha Schools has proposed for this area, particularly removal of the ungulates and weed control, will provide a benefit to the habitat as a whole and allow for natural regeneration and maintenance of the all elements of the plant communities found there.
  • Loading...
    Thumbnail Image
    Item
    Native coastal flora and plant communities in Hawai`i: their composition, distribution, and status.
    (2009-12) Warshauer, Fredrick R.; Jacobi, James D.; Price, Jonathan P.
    The Hawaiian coastal flora primarily includes the halophytic (salt-adapted) plants closest to the area of salt spray and wave wash, often concentrated within a distinct strand zone, and usually growing as low mats. However, behind the strand is a zone of vegetation that is quite varied in composition and structure, but somewhat less specialized in life form, which is also adapted to the specific conditions of the coastal environments and to those at different locales. Coastal plant communities in Hawai‘i are distributed across a very wide range of conditions, and are anything but homogeneous. Primary factors that influence their composition and structure include moisture, substrate, and exposure to wind and salt water. Some of these factors also have roles in dispersal, competition, trauma, and periodic reordering of local community compositions. External to these are anthropogenic impacts which may have a similar scale of influences today. Between 2000 and 2005 we surveyed a total of 133 coastal sites on the islands of Moloka‘i, Maui, and O‘ahu. On O‘ahu we visited 28 sites, 50 sites were surveyed on Moloka‘i, 36 sites on West Maui, and 19 sites on East Maui. The survey areas were selected primarily to sample a region’s community variety and composition, and were distributed within the diversity of moisture zones found in the coastal regions of each island. A few sites were visited on Kaua‘i and Hawai‘i, but these islands are in need of much more survey work and thus have limited commentary in the current summary. The smaller main islands (Ni‘ihau, Lāna‘i, and Kaho‘olawe), as well as many of the small offshore islets, were not visited at all in this assessment. During this project we recorded 142 taxa of native plants out of 169 that were expected based on past plant collections and from the literature. A total of 105 coastal plants were recorded on Moloka‘i, 85 on Maui, and 52 on O‘ahu. Thirty-eight species were found on all three of the islands we surveyed, 53 on at least two islands, and 51 plants were found on only one of these islands. We encountered 12 listed endangered taxa, 2 threatened taxa, and 13 species of concern (SOC) but with no official listing status, as well as many other taxa that are now relatively uncommon within the Hawaiian coastal zone. The number of plants per site varied considerably between the areas surveyed, but the greatest diversity was found on Moloka‘i and Maui, with their richest sites containing 30 and 32 species, respectively. On Maui 22 (40%) of the sites had less than10 native coastal plant species, 30 (55%) had 10 – 20 species, and 3 (5%) with more than 20 species. A different situation was found on Moloka‘i where only 10 (20%) of the sites had less than 10 native coastal plant species, 28 (56%) had 10 – 20 species, and 12 (24%) with more than 20 species. On O‘ahu seven (25%) sites had less than 10 native plant species, 20 (71%) had 10 – 20 species, and only one site (Ka‘ena Point) had over 20 species, but, in this case just a total of 21 coastal plant species. The current coastal flora of O‘ahu was somewhat reduced compared to the other two islands, likely a result of the much greater human-related impacts on the coastal zone of O‘ahu. Additionally, the remaining coastal vegetation on O‘ahu is nearly all within the dry zone. The most influential site factor for Hawaiian coastal communities is the range of moisture that occurs across any particular area. The greater the moisture zone range, the more species are likely to be found in a region. The composition of strand communities varies considerably spatially, but in most given locations communitiescontain limited subsets of the species richness potentially available. The coastal vegetation is characterized by low growing and mat forming species in areas closest to the ocean and by taller plants farther inland or where available soil has accumulated locally. In the arid and dry zones, a few annual species, mostly grasses, are seen; the viii rest of native coastal flora is perennial. Exposure to salt water and onshore flow of salt mist (‘ehukai) comprise the harshest ecological factors within the coastal zone. Exposure to ‘ehukai, strong winds, and brackish basal ground water all influence this generalization and add variegation to an area’s vegetation structure and composition. A range in other site conditions helps to further diversify the structural and species composition of the communities. Understanding of these conditions can assist managers with identification of areas to preserve and manage, and help to guide restoration attempts. Alien plants represent one of the greatest threats to native coastal vegetation in that any one of several invasive species can completely displace or prevent the colonization of entire suites of native species. Alien animals are another important threat, one that frequently opens the door for, or tips the balance to, alien plants. The most obvious and widespread animal species are pastured and free-roaming ungulates, particularly cattle, goats, sheep, pigs, and deer. The numbers and distributions of some ungulate species may have surged and waned variably over time and space, but their impacts are unequivocally negative in the coastal zone in any abundance. Human development and use of coastal areas continues to exert severe, usually permanent, impacts to remaining native coastal vegetation. Recreational activities, in particular, tend to be a widespread detriment to coastal plant communities. The fragmentation of habitats and compounding affects of an associated array of disturbances resulting from urban and agricultural activities have led to considerable attrition of species from predominately native dominates areas in the coastal zone. These losses are continuing, perhaps accelerating, with the expanding use of the limited coastal areas throughout the islands for resort, residential, and recreational activities. Given the cumulative stresses that Hawai‘i’s coastal communities have experienced in recent years, the few plant extinctions that have occurred in that habitat indicates there is still time to employ effective management to prevent more loss of diversity. However, the widespread damage to coastal vegetation and the rarity of so many species indicates the urgency for supplying sufficient targeted management to preserve species and to restore community composition, structure, and function. The coastal vegetation’s adaptation to natural disturbance, as evident from the harsh environment it occupies, coupled with its regenerative capability, may have helped these communities survive thus far. This suggests a good potential for preservation of the biota of these regions if effective and strategic management actions are effected soon. A conservation strategy that incorporates both protected regions and species augmentation may be able to reverse declining trends in Hawaiian coastal communities if applied in time and at sufficient scale. Protection of coastal regions should feature reduction or elimination of the major stress factors that accompany alien plants and ungulates, as well as reducing and compensating for the adverse consequences of land use. A number of sites on each island stand out with high species diversity and/or populations of rare plant species, as well as still having an established connection with contiguous lowland vegetation. These sites can serve as core areas for a regional approach to managing strips of coastal communities and their associated lowland vegetation. The following conclusions and potential management strategies have been derived from our survey observations:  A regional approach to coastal resource conservation is likely to be the most effective approach to secure an island’s native coastal vegetation.  It is important to identify and prioritize coastal vegetation areas that still retain connections to native lowland plant communities. Even depleted communities can still contribute to the coastal areas’ biodiversity, and both could be stabilized ix and augmented where warranted. Managing both coastal and lowland areas together can be an efficient strategy for conserving a variety of resources and processes across modestly-sized areas.  Removal or significant reductions of feral ungulates is one of the most pressing management needs along certain stretches of the coastlines of the main Hawaiian Islands. Strategic fencing can be an effective tool for excluding ungulates and potentially predators. However, high installation and maintenance costs limit their use presently, particularly near shorelines. Development of cost effective corrosion-resistant materials and appropriate designs could encourageincreased use of fences in coastal areas.  Given the ongoing spread of numerous alien plants into new regions, immediate removal of the early colonizing individuals of particularly threatening species from native coastal vegetation can proactively prevent an increase in ecosystem disruption.  Expand public education and outreach programs to enlist more support of coastal community conservation from the public. These surveys have provided more and current information on the ecology, composition, distribution, and status of coastal plant communities and species in selected portions of the main Hawaiian Islands. Although not as rich in endemic species as are upland communities, the Hawaiian coastal flora is relatively diverse, and taken as a whole, is still quite intact with very few historically known species that are now extinct. Although the coastal zone has been heavily impacted over the past 250 years, many high quality examples of diverse plant communities can still be found, particularly in the wet and mesic habitats on the islands of Maui and Moloka‘i. Management efforts that are regionally focused on reducing the impacts of invasive species (both plants and animals) and maintaining the connection between the coastal strand and lowland vegetation, coupled with expanding public awareness of the value of coastal communities, can allow for effective restoration and maintenance of this unique set of ecosystems for the future.
University of Hawaii System seal The UH System repository is supported by various University of Hawai'i campuses and is maintained by Hamilton Library. Built on open-source DSpace software.
University of Hawaiʻi at Mānoa
Hamilton Library
2550 McCarthy Mall
Honolulu, HI 96822

© University of Hawaiʻi at Mānoa Library

  • sspace@hawaii.edu
  • Library Digital Collections Disclaimer and Copyright Information