Please use this identifier to cite or link to this item:
http://hdl.handle.net/10790/3532
Mālama Loko Iʻa: Salinity and Primary Productivity Relationships at Honokea Loko. Hale o Lono, and Waiāhole/Kapalaho on Hawaii Island, Hawaiʻi
File | Size | Format | ||
---|---|---|---|---|
Anthony_hilo.hawaii_1418O_10162.pdf | 4.69 MB | Adobe PDF | View/Open |
Item Summary
Title: | Mālama Loko Iʻa: Salinity and Primary Productivity Relationships at Honokea Loko. Hale o Lono, and Waiāhole/Kapalaho on Hawaii Island, Hawaiʻi |
Authors: | Anthony, Kamala Lijana Edith |
Contributors: | Colbert, Steven (advisor) Tropical Conservation Biology & Environmental Science (department) |
Keywords: | Science education Ecology Cultural resources management Brackish water Hawaiian show 3 moreLoko iʻa Primary productivity Water quality show less |
Date Issued: | Aug 2018 |
Abstract: | Along the coastlines of the Hawaiian Islands, there is a valuable and critical resource known for its brackish water habitat – loko i‘a (Hawaiian fishponds). They are dynamic systems dependent on the balance between fresh groundwater inputs from uka (uplands) and landward flow of kai (seawater), which all vary depending on the behavior of our climate, including rainfall, tides, and storms. Nutrient-rich groundwater mixing with the seawater at the coast allows for an abundant growth of limu or primary productivity attracting many of Hawaii’s favorable native brackish water and herbivorous species. Having an intimate relationship with this natural coastal nursery, Hawaiians effectively modified these coastal habitats into loko i’a to provide a sustainable food source for the communities in which they reside. In support of these invaluable resources and practices, this study seeks to understand primary productivity and salinity relationships along the same coastline at Honokea Loko of Waiuli, and Hale o Lono and Waiāhole/Kapalaho of Honohononui, Hawaii. Weekly water quality monitoring by kiaiʻ loko (fishpond steward) and biweekly water column sampling, salinity in the three loko i’a ranged from 3.1 to 18.8 and was significantly different throughout different areas of each pond. Benthic primary productivity experiments, found significantly more growth at higher salinity locations across all sites. Due to these strong correlations, loko iʻa communities would greatly benefit from these methodologies to quantify the variability of environmental changes through time and specific impacts of climate phenomena, changes in rainfall and sea level. These factors have the potential to interfere with primary productivity and alter loko iʻa systems interactions entirely. |
Pages/Duration: | 61 pages |
URI: | http://hdl.handle.net/10790/3532 |
Rights: | All UHH dissertations and theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission from the copyright owner. |
Appears in Collections: |
TCBES Theses Tropical Conservation Biology and Environmental Science |
Please email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.
Items in UH System Repository are protected by copyright, with all rights reserved, unless otherwise indicated.